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Preface

This thesis deals with the quantum mechanical phase of particles and molecules

in various electro-magnetic configurations that may be exploited in the molecular

and nano-scale interferometric setup. The thesis consists of five chapters that flow

seamlessly into the next as one reads. Every chapter begins with an abstract that

gives a brief summary of the work presented there. The background material on

the subject covered in each chapter is provided with relevant classic and recent

references. This is followed by motivations as presented in the section, “Scope of

the Work”, leading to investigations as presented in the “Results and Discussion”

section in Chapters 2 through 4. Each of these chapters ends with the “Summary

and Concluding Remarks”, followed by a list of references. At places, additional

studies and figures that are not the part of the published article are also presented.

The last chapter provides a brief summary of the work covered in the thesis with

a future outlook and suggestions for future work on some selected topics.

Chapter 1 gives a brief review of the necessary background materials

for the work carried out in this thesis starting with a preamble to the various

quantum mechanical topological phases of the neutral and charged particles. This

includes the Aharonov-Bohm (AB) phase of a charged particle, the dual-AB phase

of a fluxon, the Aharonov-Casher (AC) phase of magnetic moment and the He-

McKellar-Wilkens phase of electric dipole moment in the various electromagnetic

field configurations. A brief overview of various excitons is presented to the ef-

fect that how the exciton-based optoelectronic devices exploiting the HMW phase

might benefit from the significant electric dipole moment of the inter-layer excitons

in the bilayer heterostructures of transition-metal dichalcogenides (TMDs).

Chapter 2 presents a systematic investigation of the locality aspects of the

various quantum topological phase shift effects that include the AB, AC and HMW

effects. A unified coherent description is presented emphasizing that the topolog-

ical effects are exclusively local phenomena. Absence of force on the charged par-

ticle passing by a “perfectly shielded” long and narrow current carrying solenoid

establish that the AB phase shift is truly non-classical in origin. The AB phase

shift from energy consideration is presented.

vii



Chapter 3 focuses on the HMW phase of the neutral particles endowed

with an electric dipole moment. Derivation of the HMW phase with explicit

consideration of the interaction between current associated with the moving dipole

and the magnetic vector potential is presented. Various field configurations are

explored and conditions laid down for the observation of the HMW phase in its

original essence with radial magnetic field alone. A practical setup is proposed for

the observation of the HMW phase in a radial magnetic field.

Chapter 4 opens with the possibility of modulating the HMW phase ac-

quired by the excitons in suitably designed light-driven molecular ring junctions.

Influence of magnetic field on the transmission probability of exciton transport in

a 1D continuum ring and polyacetylene macrocycle (PAM) dimer ring is demon-

strated within the model based calculations. The possible modulation of exciton

photoluminescence (PL) at the output by the applied magnetic field in the ring is

discussed.

Chapter 5 briefly summarizes the main conclusions of the study carried

out in this thesis. The future direction of research and development in this area

is explored. A list of future works on a few selected topics is given, along with an

outline and explanation.

The thesis concludes with a list of index that fills the last pages.
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Chapter1

Introduction: The Background

Abstract

This chapter provides an overview of the most relevant topics concerning the work

carried out in this thesis. Background materials are presented, and the strategy

of the work is outlined, with details addressed later in the respective chapters.

1



Chapter 1 Sec.1.1

1.1 Preamble

The quest for understanding particle-field interaction is as much old as Maxwell’s

classical theory of the electromagnetic field, which is one of the important pillars

of modern physics. Maxwell’s electromagnetic theory played a fundamental role

in the development of Einstein’s special theory of relativity. It is important to

realize that Maxwell’s equations in vacuum implicitly contain the special theory of

relativity. The advent of quantum theory, however, revealed the need of addressing

additional significance to the quantities introduced in classical physics. An issue

concerning such redressal constitutes the part of the theme subscribed herein. We

here begin with the classical notion of the electromagnetic fields that otherwise

are considered the fundamental quantities responsible for every effect.

In classical physics, a charged particle q moving with a velocity ~v in an

electromagnetic field ( ~E, ~B) experiences a force described by the Lorentz,

~F = q

(
~E +

~v

c
× ~B

)
. (1.1)

The classical notion is that the behaviour of charged particles in the electromag-

netic field can entirely be described by the fields ( ~E, ~B), while the associated

potentials, viz., the scalar electric potential φ and the magnetic vector potential

~A are introduced only as a means of obtaining ~E and ~B as, ~E = −~∇φ − ∂ ~A
∂t

and

~B = ~∇ × ~A. The potentials (φ, ~A) have no physical significance of their own,

2



Chapter 1 Sec.1.1

and are determined only up to a transformation known as gauge transformation.

Under the gauge transformation, viz., φ → φ′ = φ − ∂χ
∂t

and ~A → ~A′ = ~A + ~∇χ,

where χ is a scalar function called gauge function, the potentials (φ, ~A) undergo

transformation attaining a new value, while the fields ( ~E, ~B) remain unaffected.

The above viewpoint, however, shattered when Yakir Aharonov and

David Bohm in 1959 made a fascinating and remarkable prediction in their sem-

inal paper on the “Significance of Electromagnetic Potentials in the Quantum

Theory”,[1] that the behavior of the charged particles cannot entirely be described

by the fields ( ~E, ~B). Instead, the scalar and vector potentials (φ, ~A) play an im-

portant role and thus bring about the fundamental importance of potentials over

the fields. Among the two proposed experiments to verify the effect of the po-

tentials (φ, ~A) on the motion of the charged particles, the prediction of a phase

difference between the counter-propagating electron’s wave function outside a long

current-carrying solenoid is extensively studied for if the vector potential ~A is

more fundamental than the field ~B. Another important defining feature of the

Aharonov-Bohm (AB) effect is the independence of the phase on particle veloc-

ity and path taken, which makes the effect topological in nature. The study not

only revealed the importance of the vector potential but also engendered analo-

gous topological effects, viz., the Aharonov-Casher (AC) [2] and the He-McKellar-

Wilkens (HMW) [3, 4] effects. Moreover, the investigation and exploitation of the

AB effect resulting from the potential-induced phase difference remain far from

finished.
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In what follows, we outline the various topological effects and the inter-

relation between them. The physical origins of each effect will be briefly explored,

while a more in-depth understanding of the mechanism as studied in this work

will be discussed later in the related chapters, viz., Chapters 2 and 3. The model

calculation for possible exploitation of one of the topological effects in the opto-

electronic devices is presented in Chapter 4. Finally, the key conclusions of the

work in the thesis are summarized in Chapter 5, and future prospects are discussed.

1.2 Sagnac Effect

The Sagnac effect is a phase-induced effect in the rotating atom or optical in-

terferometers that leads to the difference in travel time between the two counter-

propagating particles or optical waves.[5] The path difference between the counter-

propagating waves differs by an amount proportional to the angular velocity ω of

rotation of the interferometer, and the area S enclosed by the paths of interfering

waves, leading to a shift of the interference fringe positions when the interfering

waves overlap.[6] The effect is universal and experimentally observed for both light

and particle waves. A sketch of the Sagnac interferometer mounted on a turntable

rotating with a constant angular velocity ω is shown in Fig. 1.1. While the entire

interferometer setup is made to rotate, the light or particle beam from a source is

split into two beams by a beam splitter (usually a half-silvered mirror) which in

conjunction with an arrangement of beam reflectors allows them to propagate in

opposite directions. These beams are constrained to make round trips, which are
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Figure 1.1: Sagnac interferometer mounted on a turntable. M’s indicate the
beam reflectors, while the letter S denotes the area (shaded region) enclosed by

the interfering waves. Figure adapted from Ref.[5]

then, reunited back for overlap to produce the interference pattern. The differ-

ence in the round-trip time for these counter-propagating beams leads to a phase

difference with a consequent shift in the position of the fringes in the interference

pattern. The phase difference induced due to the difference in path lengths be-

tween the counter-propagating waves in the rotating interferometer is known as

the Sagnac phase, and the phase-induced effect as the Sagnac effect, named after

its discoverer in 1913. It turns out that the Sagnac phase is expressible as the

closed line integral of the linear velocity ~v of rotation of the interferometer, which

is then transformed into the surface integral form involving the physical quantities

that are easily accessible to experimental measurements,

φSag =
m

~

∮
~v · ~dl =

2m

~

∫
~ω · ~dS =

2m

~
ωS, (1.2)
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where m is the inertial mass of the interfering particles (m = h/λc for photons).

Note that the constancy of the angular velocity ω of the interferometer is employed

in obtaining the last equality. Also, the phase acquired is independent of the

velocity of the interfering waves and the path taken.

Concerning the theoretical perspectives behind the Sagnac phase, the

interaction energy associated with the local coupling of velocity field ~v to a com-

ponent of the canonical momentum, the hidden momentum ~phidden = m~v, is

U = −~v · ~phidden. Therefore, the Sagnac phase is

φSag =
1

~

∮
−∂U
∂~v
· ~dl,

=
m

~

∮
~v · ~dl,

=
2m

~

∫
~ω · ~dS,

=
2m

~
ωS. (1.3)

Yet another elegant way to look at the Sagnac phase is due to Sakurai.[7] As

shown, the Sagnac phase can be obtained from the AB phase by exploiting the

two-fold analogy, between the Lorentz force on a charged particle and the Coriolis

force in the rotating frame, and that between the canonical momentum of the

charged particle and that in the rotating frame. The Sagnac effect is a well stud-

ied phenomenon with numerous applications including the most common technical

application in the fibre-optic gyroscope (FOG) systems that sense changes in ori-

entation of an object by measuring the angular velocity utilizing the Sagnac effect
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occurring in an optical fiber loop or a ring laser in the setup.[8]

1.3 Aharonov-Bohm Effect

An interesting and far-reaching aspect of Maxwell’s electrodynamics of particle-

field interactions involves both the classical fields ( ~E, ~B) as well as potentials

(φ, ~A). However, the potentials are introduced only as a convenient means of

evaluating the fields whenever symmetry of a system permits, particularly in the

case of evaluating magnetic field ~B from the vector potential ~A. The defining

equations for the potentials (φ, ~A) are ~E = −~∇φ − ∂ ~A
∂t

and ~B = ~∇ × ~A. As is

evident that unlike the fields ( ~E, ~B), the potentials are subject to change under the

gauge transformations φ→ φ′ = φ− ∂χ
∂t

and ~A→ ~A′ = ~A+ ~∇χ. As a consequence,

any physical significance, as otherwise, in the sense of ordinary physical quantities,

cannot be deduced for potential.

Notwithstanding the above, in 1959, in the most influential paper, Aharonov

and Bohm (hereafter AB), drew attention to the significance of potentials and their

role in the quantum mechanics of the charged particles.[1] Ever since their seminal

work, our perception of the potentials as exclusively the mathematical construc-

tion for the calculation of fields has changed. Moreover, it has raised considerable

interest and speculation too, with never-ending debate. The crux of the AB’s

work hinges on the conclusion that the interference fringes formed by the inter-

fering charged particles get shifted by the potentials (φ, ~A), though the charged

7
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particles never come in direct contact with the physical fields ( ~E, ~B). Thus, there

is no electromagnetic force whatsoever on the moving charged particles. However,

in the electric (or scalar) AB effect, the charged particles indeed pass through

time-dependent scalar electric potential, while in the magnetic (or vector) AB ef-

fect, they traverse through spatially varying, but static, magnetic vector potential

outside a long current-carrying solenoid. With no force acting on the particles, the

AB effects are essentially quantum-mechanical in nature, and the non-classical ex-

planation is that the potentials influence the canonical momentum of the charged

particle leading to the wave function of the particle acquire phase that affects the

interference fringes.

In the following sections, we describe the electric and magnetic AB effects

with due attention to the latest works on the subject.

1.3.1 Electric Aharonov–Bohm effect

In the seminal paper,[1] AB proposed the interference experiment to test the influ-

ence of scalar electric potential φ on the motion of electrons through a region where

there are no physical fields, i.e., ~E = 0, ~B = 0. As shown in Fig. 1.2, the proposed

experimental setup has two long cylindrical metal tubes within which the elec-

trons are subjected to time-varying electric potentials, φ1(t) and φ2(t). A coher-

ent electron wavepacket travelling towards the tubes is split into two wavepackets.

Subsequently, each wavepacket is allowed to enter a long cylindrical metal tube

wherein the potentials are varied only when the electron wave packets are well

8
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Figure 1.2: Schematic diagram of electric Aharonov-Bohm effect. φ1 and φ2

are the time-varying electric potentials that are switched on to influence the
electron wavepackets only when the wavepackets are well within the metallic

tubes.

inside the tubes so as not to have any effect of the stray or fringe fields at the

ends of the tubes. The wavepackets are then superimposed to give an interference

pattern. The proposed experimental setup is expected to show a phase difference

due to the time-dependent scalar potential, even though no electromagnetic force

is ever exerted on the wave packets. Consequently, the interference pattern will

show the displacement of the interference fringes, with a magnitude proportional

to the phase difference, within the undeflected diffraction envelope. This is known

as the electric AB effect (EAB). The electric AB phase reads [1]

φEAB =
e

~

∮
φ(t)dt,

=
et

~
∆φ(t), (1.4)
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where ∆φ(t) = φ2(t)− φ1(t) is the potential difference between the two tubes. A

rigorous proof of quantum mechanical prediction of the existence of the electric

AB effect under some conditions can be found in Ref. [9]. It must be mentioned

here that the electric AB effect is much less studied both theoretically [9] and

experimentally,[10] and its very existence is still a controversial issue.[11–14]

1.3.2 Magnetic Aharonov–Bohm effect

Owing to the comparatively much easier and technically attractive experimental

setup for the magnetic AB effect, it is no surprise that there exists a huge volume

of literature on the magnetic version of the AB effect. In what follows, we shall

limit our discussion to the magnetic AB effect only (hereafter, just AB effect). As

shown in Fig. 1.3, the AB setup consists of a long, narrow and tightly wound

current-carrying solenoid that produces uniform magnetic field ~B within it, while

no field in its exterior. The incoming electron beam is split into two, which are then

made to overlap at the other end after traversing past the solenoid from opposite

sides, thereby enclosing the magnetic flux Φ of the solenoid within the interfering

paths. The amount of fringe shift in the interference pattern is predicted to be

proportional to the amount of magnetic flux Φ enclosed by the interfering paths.

This effect is known as the AB effect, and the associated induced phase φAB is the

AB phase. As there is no magnetic field and electric field either, the charged par-

ticle does not experience force whatsoever, and the non-classical explanation for

the AB effect is that the vector potential ~A enters into the canonical momentum of

10
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Figure 1.3: Schematic diagram of Aharonov-Bohm effect. The long, narrow
and tightly wound solenoid carries a steady current to produce a uniform mag-
netic field ~B inside the solenoid, however, no magnetic field outside the solenoid.

The vector potential ~A mimics the direction of current flow in the solenoid.

the moving charged particle leading to the wave function of the particle acquiring

phase that affects the interference fringes. The difference in phase accumulated on

either path around the solenoid is the line integral of the electromagnetic momen-

tum. The Lagrangian for the charged particle q moving with velocity ~v outside

the solenoid, where there is only the magnetic vector potential ~A, is given by

L =
1

2
m|~v|2 + q ~A · ~v. (1.5)
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The canonical momentum is

~pcanonical =
∂L

∂~v
,

=
∂

∂~v

(
1

2
m~v2 + q ~A · ~v

)
,

= m~v + q ~A. (1.6)

As ~pcanonical = ~pkinetic + ~pem, the electromagnetic momentum is identified as ~pem =

q ~A. The associated interaction energy is U = −~v · ~pem, and the AB phase is

φAB =
1

~

∮
−∂U
∂~v
· ~dl,

=
q

~

∮
~A · ~dl,

=
q

~

∫
~B · ~ds, (1.7)

where ~B = ~∇× ~A is the magnetic field that exists only inside the solenoid. Thus,

the AB phase is proportional to the amount of flux Φ =
∫
~B · ~ds enclosed by the

interfering paths.

Although the very existence of the AB effect was demonstrated in an

early experiment by Chambers,[15] a conclusive demonstration was made in the

electron holography interferometry experiments by Tonomura et al.,[16–18] with

due attention to the magnetic field leakage if any. Nevertheless, the theory behind

the AB effect has generated two longstanding fundamental issues that continue

till today. First, since the physical field ~B is confined inside the solenoid, the
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charged particle is as if interacting with the field from a finite distance away,

i.e., non-locally, thereby causing the interference fringes to shift in accordance

with the amount of magnetic flux inside the solenoid. Second, since locally only

the vector potential ~A is present, the interaction it causes must be local. And

since, ~A enters in the Schrödinger equation for the particles, the status of ~A must

be promoted to a quantity of fundamental importance, from erstwhile, a merely

mathematical construction for the evaluation of magnetic field whenever symmetry

of a system permits. This in turn suggests that ~A, though non-gauge invariant,

may be regarded as a physical quantity more fundamental than the physical field ~B.

These issues have been fiercely debated in the literature, and continue unabated,

constituting the subject explored in the next chapter.

1.4 The AB Conundrum: Classical or Quantum?

Does it Exist?

From the very beginning, the validity of the AB effect, as proposed in the seminal

paper by Aharonov and Bohm,[1] has been questioned and uncertainty contin-

ues to date. Among others,[19–25] a sound semi-classical interpretation of the

AB put forward by Boyer has always inspired the opponents of the AB effect,

thereby doubting the AB effect as a force-based classical effect.[26–29] No doubt,

this has remained an elegant method ever proposed to explain the supposedly

quantum phenomenon advocated by the proponents of the AB effect.[30–32] The

13
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tug of war is often complicated by the proposals of radically different interpreta-

tions over time.[33–37] Notwithstanding the above, some doubt if the AB effect

really exists![13, 28, 38] Nevertheless, limiting our interest in the subject of main-

taining the existence of the AB effect, we here discuss only the main three per-

spectives on the AB effects, viz., Boyer’s reactionary force-based analysis,[27, 28]

Vaidman’s interpretation of the role of potential,[39] and Wang’s energy-based

interpretation.[40]

1.4.1 Boyer’s reactionary force-based analysis

In consonance with some of the earliest objections against the AB effect,[19–23] a

series of papers due to Boyer [26–29] has revolutionized our perception of the AB

effect, particularly due to the surprising match between his reactionary force-based

induced phase and the genuine AB phase. The basic idea is that the magnetic field

~Bq of a charge q, mass m, and moving with a velocity ~v overlaps with the magnetic

field ~BS inside a narrow and tightly wound long solenoid having a cross-sectional

area A. The interaction energy corresponding to the overlapping of the magnetic

fields is

UBB =
1

µ0

∫
~Bq · ~BS dτ. (1.8)
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Figure 1.4: A schematic of the AB effect showing the path difference ∆y
developed between the wave packets when they pass the solenoid enclosing the

magnetic field in its interior.

The back-action force on the charged particle is ~F = −~∇UBB, which can be shown

to be [20, 21, 28]

~F = q~∇(~v · ~A), (1.9)

where ~A is the vector potential outside the narrow and tightly wound current-

carrying solenoid. For the solenoid oriented along the z-axis and the charged

particle moving along the y-axis, the analysis of the longitudinal component Fy =

q~∇(~v · ~A)y of the force reveals that the charge q is first speeded up as it approaches

the solenoid along one of the interfering paths, and then slowed down as it recedes

away. As shown in Fig. 1.4, this action of the longitudinal component Fy gets

reversed for the interfering path on the other side of the solenoid, leading to a

relative time lag and the path difference, ∆y = qBSA/mv, between the charges

reaching the interference region.[27, 28, 32] The associated phase difference is,
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φ =
2π

λ
∆y =

qBSA
~

=
qΦ

~
, (1.10)

where Φ = BSA is the magnetic flux in the solenoid. It must be noted that

λ = h/mv is the de Broglie wavelength associated with the moving particle. This

is the only non-classical idea Boyer employed in obtaining the above expression for

the induced phase, which is precisely the AB phase, Eq. 1.7. This surprising match

between the force-based expression φ and the quantum mechanical expression φAB

is the greatest triumph of the semi-classical force-based analysis of the genuine AB

effect. Ironically, a recent experiment aimed at measuring any time delay between

the charged particles traversing opposite sides of the current-carrying solenoid

showed a null result.[32]

Finally, Boyer’s force-based analysis of the AB effect has led to the classi-

fication of the force-based interference effect into type I and type II classes.[27, 32]

In the type I interference, the interfering particles experience deflecting transverse

force resulting in a shift of the entire interference pattern, i.e., the double-slit

fringe pattern as well as the single-slit envelope. Whereas in the type II interfer-

ence, the interfering particles suffer time lag due to longitudinal force, resulting

in path difference and hence the fringe shift in the interference pattern, i.e., only

the double-slit pattern (the wavy structure in the interference pattern in Fig.

1.4) gets shifted, while the single-slit envelope (the broad outline hump) remains

undisplaced. Thus, within Boyer’s analysis, the AB phase belongs to the type

II interference effect. A deeper discussion on this issue in conjunction with the
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genuine AB phase is relegated to the next chapter.

1.4.2 Vaidman’s interpretation on the role of potential

Consideration of a local theory for the AB effect at the cost of accepting the

vector potential ~A as a physical quantity entails that ~A is more fundamental than

the physical field ~B, a view expressed in the influential paper of Aharonov and

Bohm.[1] The vector potential is non-gauge invariant, however, its closed line

integral, i.e., the magnetic flux, and hence the AB phase φAB is gauge invariant.

Amid persisting issue of whether or not ~A is more fundamental than ~B, Vaidman

[39] proposed a quantum mechanical explanation of the AB effect without the use

of vector potential. The main idea is the local interaction between the magnetic

field of the moving charged particle and the source of the potential, the solenoid

when treated quantum mechanically. According to Vaidman, the charged particle

q and the source S of the potential can be considered as a composite system

described by one state, i.e., an entangled state represented by the total wave

function

|Ψ〉tot =
1√
2

(|L〉q|ΨL〉S + |R〉q|ΨR〉S) , (1.11)

where {|L〉q, |R〉q} are the states of charged particles moving past the solenoid

from the left and right sides, while {|ΨL〉S, |ΨR〉S} are the quantum states of the

source (solenoid) for the corresponding left/right side motion of the particles. Due
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to local interaction between the magnetic field of the moving charged particle and

the source of the potential, the states of the source evolve, however, they differ only

in their phase. At the end of the evolution, the states {|ΨL〉S, |ΨR〉S} are identical

except for the AB phase factor e
i
~φAB , i.e., the total wave function becomes

|Ψ〉tot =
1√
2
|Ψ〉S

(
|L〉q + e

i
~φAB |R〉q

)
. (1.12)

Such an evolution of the total wave function leads to a shift of fringes in the

interference pattern, which is the AB effect.

1.4.3 Wang’s energy-based interpretation

Yet another non-classical interpretation of the AB phase due to Wang [40, 41] em-

anated from the consideration of the magnetic interaction energy associated with

the overlap of magnetic field ~Bq of the moving charged particle with the field ~BS

inside the solenoid. The field configurations are shown in Fig. 1.5. The interac-

tion energy corresponding to the overlap of the magnetic fields as expressed in Eq.

1.8 is shown to be UBB = q~v · ~A .[31, 40] A subtle difference that exists between

Wang’s energy-based interpretation [40, 41] and Boyer’s force-based interpreta-

tion [27, 28] is that in Wang’s consideration there is no reactionary back-action

non-Lorentz force ~Fq = −~∇UBB, on the charged particle. Instead, the magnetic

interaction energy UBB = q~v · ~A, which is precisely the form of the interaction

energy appearing in the Lagrangian for the charged particle, directly leads to the
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Figure 1.5: Schematic diagram of AB setup showing the magnetic field ~Bq
due to a moving charged particle and the field ~BS within the solenoid.

AB phase given by Eq. 1.7. To us, this is a little obscure, that how this interaction

energy is accessible to the charged particle moving outside the solenoid? We will

revisit this problem later in Chapter 2 in the context of AB effect with imperfect

shielding. Nevertheless, the essence of Wang’s analysis is that the AB effect is the

energy-based effect, and not the force-based effect as advocated by Boyer.[27, 28]

1.5 Aharonov-Casher Effect

After about 25 years of discovery of the AB effect, Y. Aharonov and A. Casher,

in 1984, discovered an analogous topological effect, in which a moving neutral

particle possessing a magnetic dipole moment ~m in a radial electric field ~E(~r)
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acquires phase independent of its velocity and path taken. This is known as the

Aharonov-Casher (AC) effect,[2] and the setup is shown in Fig. 1.6. Just as in

the AB effect, the neutral particles experience no force or torque in their entire

journey along the paths. Idealizing a perfect source of a cylindrically symmetric

Figure 1.6: The Aharonov-Casher setup, wherein neutral particles having
magnetic dipole moment ~m move past the radial electric field ~E produced by a

line of electric charges, q.

radial electric field, Aharonov and Casher consider an infinitely long and straight

line of electric charges in which coherent neutral particles possessing permanent

magnetic dipole moment move past the line distribution of charges from both sides

to interfere on a reunion at the other end. Physically, in the co-moving frame,

the magnetic moment ~m of the neutral particle interacts locally with the Lorentz

transformed magnetic field, ~B′ = ( ~E×~v)/c2, and the associated interaction energy

is U = −~m · ~B′. Viewed in the lab frame, the moving magnetic moment appears as

an electric dipole moment ~d′ = (~v × ~m)/c2, that interacts locally with the electric

field ~E produced by the line of charge and the associated interaction energy is

U = −~d′ · ~E. The interaction energy is the same in the co-moving frame of the
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particle as it is in the lab frame. Thus, the Lagrangian for the particle is

L = T − U =
1

2
m|~v|2 + ~v ·

(
~m× ~E

c2

)
, (1.13)

and the AC phase of the particle’s wavefunction that affects the interference fringes

is

φAC =
1

~

∮
−∂U
∂~v
· ~dl,

=
1

~c2

∮
(~m× ~E) · ~dl. (1.14)

The AC phase was experimentally demonstrated for the thermal neutrons, in 1989,

by Cimmino et al. [42] using a neutron interferometer with 30KV/mm vacuum

electrode system in the setup. The observed phase acquired by the particles in

the setup was measured to be 2.19 ± 0.52 mrad which is roughly the same order

of magnitude as the theoretical value, 1.52 mrad, estimated for the geometry and

experimental conditions of the setup. The AC phase is also reported to be observed

in the interference of magnetic vortices around an induced charge.[43]

1.6 He-McKellar-Wilkens Effect

After about 8 years of discovery of the AC effect, a third topological effect was

predicted in 1993 by He and McKellar,[3] and independently by Wilkens,[4] a

year later, in which a neutral particle endowed with a permanent electric dipole
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moment ~d traversing through a region of radial magnetic field ~B undergoes a

relative phase shift in its wave function. This effect is known as He-McKellar-

Wilkens (HMW) effect, and the induced phase difference between the interfering

waves is the HMW phase, φHMW . The setup is shown in Fig. 1.7. Since the

Figure 1.7: A simplified view of the HMW setup, in which neutral particles
having permanent electric dipole moment ~d traverse through the radial magnetic

field ~E produced by a line of magnetic charges, g.

HMW effect is the electromagnetic dual of the AC effect, a role reversal of the

pair (~m, ~E) in the AC setup with (~d, ~B) in the HMW setup leads to interaction

energy, U = −~d · ~E ′ = −~d · (~v × ~B), in the rest frame of an electric dipole, or

equivalently, U = − ~m′ · ~B = −(~d × ~v) · ~B, in the lab frame. The Lagrangian for

the particle is then

L = T − U =
1

2
m|~v|2 + ~v ·

(
~B × ~d

)
, (1.15)
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and the HMW phase is

φHMW =
1

~

∮
−∂U
∂~v
· ~dl,

=
1

~

∮
( ~B × ~d) · ~dl. (1.16)

A major hurdle in the experimental verification of the HMW phase is the need for a

radial magnetic field. Starting from Wilkens’ proposal [4] of the setup consisting of

a thin magnetic sheet that one of the interfering paths straddles the sheet through

a small hole on it where the field is nearly radial, several others [44–48] have

proposed a wide variety of setups and field configurations to meet the demand

that both force and torque on the moving dipole are identically zero.[49–52] It

took almost two decades for the experimental verification of the HMW effect when

Lepoutre et al. [53–56] confirmed the effect in a Li-atom interferometer with an

interaction region consisting of crossed electric and magnetic fields similar to that

proposed by Wei-Han-Wei.[44] The measured values for the three mean velocities

in the range 744-1520 m/s are in excellent agreement with the calculated value

φcalHMW (IV ) = 1.28± 0.03 mrad/IV , as a function of current-voltage (IV ) used in

the experiment.[54]

It must be mentioned here that the measurement of the HMW phase

also requires the electric dipole moment of the particles as large as possible. The

electric dipole moment of the stable atoms is usually small. Instead, as suggested

in Ref. [46], one may use some polar molecules like BaS having a permanent

dipole moment of 10.76 Debye [57] which is about 6-fold the value for an isolated
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water molecule (|~d|=1.85 Debye). We note in passing that the permanent dipole

moment of dipolar molecules does not exceed 12 Debye.[58] Furthermore, a study of

a neutral composite particle consisting of an electron-hole pair, called an exciton,

has proven a promising candidate for the study and exploitation of the HMW

phase due to exceedingly large dipole moment over several hundreds of Debye in

some cases. A brief introduction to the physics of excitons will be covered in the

next few sections.

1.7 Dowling’s Unified Description of the Topo-

logical Phases

It is realized quite early that the AC and HMW phases are the Maxwell’s electro-

magnetic dual of each other with the duality pair transformations ( ~E → c ~B, ~m→

−c~d) and (c ~B → − ~E, c~d → ~m). In an attempt at providing a unified description

of the three topological phases, viz., AB, AC and HMW, Dowling et al.[45] dis-

covered the Maxwell dual of the AB phase, called the dual AB (DAB) phase, in

which a moving magnetic charge g past a line of electric dipoles ~d acquires phase,

such that the phase difference between the interfering magnetic charges is

φDAB = − g

~c2
φE, (1.17)
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Figure 1.8: Maxwell electromagnetic duality relations between the pair topo-
logical effects (a) Aharonov-Bohm and (c) Dual Aharonov-Bohm, and that be-
tween (b) Aharonov-Casher and (d) He-McKellar-Wilkens. The confined mag-
netic and electric fluxes in the configurations (a) and (c) are considered due to

a linear array of magnetic and electric dipoles.

where φE is the electric flux of the line of electric dipole enclosed by the interfering

paths. The AB phase in terms of magnetic flux is

φAB =
q

~
φB, (1.18)

where the magnetic flux φB, as otherwise confined inside a solenoid, can be

considered as due to a line of magnetic dipoles ~m. The two topological phases

φAB and φDAB are related by the duality pair transformations ( ~E → c ~B, g → −cq)
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and (c ~B → − ~E, cq → g). A schematic of the duality pairs is presented in Fig.

1.8. It must be noted that the DAB effect is already been demonstrated if the

magnetic fluxon are considered as the magnetic charges.[43] Of interest to us here

is the generalization of the duality relations among the various effects, however,

the pair effects (AB & AC) and (DAB & HMW) are found to relate only through

“reference frame correspondence”. This is discussed in Chapter 2.

Since, we consider potential exploitation of the HMW phase in the exci-

tonic optoelectronic devices, in what follows, we discuss very succinctly the differ-

ent types of excitons while we restrict ourselves to a class of excitons of interest

and suitable materials where such excitons manifest to exist.

1.8 Excitons

Excitons are neutral bound electron-hole pairs that exist in dielectrics, semicon-

ductors, and also in some molecular materials. When incident photons are ab-

sorbed by the materials, the electrons are excited to the conduction band generat-

ing vacancies for electrons in the valence band, called holes, which are considered

as positive charges in the valence band. The attractive Coulomb interaction be-

tween an excited electron in the conduction band and a hole in the valence band

binds them together to form a bound electron-hole pair, i.e., an exciton. Excitons

are capable of diffusion through the materials and eventually, the electron and

hole pair recombine, thereby releasing the recombination energy in the form of
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photons, often at wavelengths different from that of the absorbed photons. Since

excitons can be regarded as the intrinsic electronic excitations in the materials,

their motion can be viewed as the transport of energy through the materials with-

out transporting the net charges.

The idea of an exciton as a quasiparticle formed by the association of

an electron and a hole with an attractive force between them was first proposed

by Frenkel in 1931.[59] As such, the excitons represent a wide class of electronic

excitations in a variety of materials, which we classify as follows.

1.8.1 Types of excitons

1.8.1.1 Classification based on size

Excitons are generally classified into three categories based on their size (Bohr

radius) relative to the interatomic or intermolecular distances in the material. [60]

We briefly describe them as follows.

(a) Frenkel excitons

Frenkel excitons are tightly bound electron-hole pairs localized in atoms or molecules

and have size (exciton Bohr radius ∼ 10 Å) same order as the size of the unit cell

of the material. Frenkel excitons are usually generated in the materials having

a relatively small dielectric constant, so that the strong Coulomb interaction be-

tween the electron and hole would make them tightly bound and localized. These
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excitons have binding energy on the order of 0.1 to 1 eV, and are typically found

in alkali halide crystals and in organic molecular crystals composed of aromatic

molecules, such as anthracene and tetracene.

Because of their small size and site localization, their wave functions do

not overlap, and thus the interaction between the Frenkel excitons at different

sites can be neglected in many cases. Also, due to small size the Frenkel excitons

have vanishingly small permanent electric dipole moments, however, a finite dipole

moment can be induced by an externally applied electric field. Frenkel excitons

have well-defined spin states (singlet and triplet) and travel by hopping process

with the associated energy transfer described by the Förster or Dexter mechanism.

These mechanisms will be briefly reviewed and discussed shortly.

(b) Warnier-Mott Excitons

Warnier-Mott excitons are loosely bound electron-hole pairs having a size (exciton

Bohr radius ∼ 100 Å) larger than the interatomic spacing due to dielectric screen-

ing of the Coulomb interaction between the electron-hole pairs. These excitons are

found in most of the typical inorganic semiconductors having small energy band

gap and high dielectric constants such as indium antimonide (InSb, 0.17 eV), ger-

manium (Ge, 0.66 eV), silicon (Si, 1.11 eV), and gallium arsenide (GaAs, 1.43 eV).

Owing to a small Coulombic binding energy (typically < 0.1 eV), these excitons

tend to dissociate very quickly even at temperatures around room temperature.

For example, the lifetime of such an exciton in Ge is of the order of 10−5 sec. The
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spin state of Wannier-Mott excitons is not well defined due to the rapid exchange

of singlet-triplet states.

(c) Charge-Transfer Excitons

Charge-transfer (CT) excitons are the excitons intermediate between the Frenkel

and Wannier-Mott excitons. The CT excitons are formed when the electron and

hole occupy the adjacent molecules called the donor and acceptor molecules in re-

gards to electron or hole transfer between the donors and acceptors. The molecules

of the material can be similar, or they can be dissimilar, in which case they form

a heterojunction of dissimilar materials. Although the electrons and holes occupy

adjacent molecules, they are still bound by the Coulomb interaction, however,

smaller than that of the Frenkel excitons but certainly higher than the thermal

energy at room temperature (25 meV). As a result, these excitons possess strong

permanent electric dipole moments and can have values as large as 10-25 Debye.

These excitons occur primarily in the organic and molecular crystals and also in

transition metal oxides. Furthermore, conversion of the Frenkel excitons into the

CT excitons is possible at the interface of the materials. Like Frenkel excitons,

the CT excitons will either be in a singlet or in a triplet spin state configuration.

Due to the long lifetime and permanent electric dipole moment, these excitons are

highly appealing for optoelectronic devices.
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Figure 1.9: (a) Singlet exciton S1, (b) Triplet exciton T1, and (c) Absorption
of photons generates singlet exciton that undergoes fission generating two triplet
excitons. Alternatively, the intersystem crossing is possible to form the triplet

excitons.

1.8.1.2 Classification based on spin state and spatial confinement

(a) Singlet and Triplet Excitons

Within the molecular orbital picture of the formation of excitons in the organic

semiconductors, the excitons can feature the spin states, either singlet or triplet

for spin multiplicity S = 0 or S = 1, respectively. The singlet excitons, consisting

of an electron and a hole with opposite spin orientation, have low binding energy

(. 0.5 eV) with diffusion length on the order of nanometers, while they move

faster through the Förster mechanism. In contrast, the triplet excitons, consisting

of electron and hole with the same spin orientation, have high binding energy in

the range ∼ 0.5 to < 1 eV with diffusion length on the order of micrometers and

move slower through the Dexter mechanism.[61] Unlike the singlet excitonsthat
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are directly produced by the absorption of photons, the triplet excitons are pro-

duced through the fission of singlet excitons by which one singlet exciton splits

to form two triplet excitons without a spin-flip involved in the process.[62–64] A

representation of this process is shown in Fig. 1.9. Also, the triplet excitons can be

generated from singlet excitons via intersystem crossing involving a spin-flip, which

is generally slow due to weak spin–orbit coupling in the organic materials.[65, 66]

However, once formed, the reverse intersystem crossing requires a spin-flip which

is less favorable, and thus the triplet excitons are relatively long-lived than the

singlet excitons. The singlet exciton diffusion length is typically on the order of

a few nanometers, whereas the value may exceed over a hundred nanometers for

triplet excitons.

(b) Direct and Indirect Excitons

Usually, the excitons in a semiconductor have a very short lifetime due to the

small spatial separation between the Coulomb bound electron and hole. When

both electron and hole are confined in the same potential well, a direct exciton

will be formed. Such excitons have a very short lifetime (< 10−9 s) and do not

possess static dipole moment. If, however, they are localized in different wells,

an indirect exciton will be formed. The indirect excitons can have a large spatial

separation between the electron and hole, and thus possess static dipole moment

and have a much longer lifetime (∼ 10−6 s to 10−9 s). The lifetime of indirect

excitons depends significantly on the width and the barrier separating the poten-

tial wells.[67, 68] A schematic representation of the formation of such excitons is
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Figure 1.10: Schematic representation of exciton formation. A direct exciton
is due to the trapping of both electron and hole in the same potential well, and
indirect exciton is due to the confinement of an electron and a hole in adjacent

potential wells.

shown in Fig. 1.10.

(c) Intra- and Interlayer Excitons

An emerging class of excitons that manifest in the multilayer 2D semiconductor

materials are the intralayer and interlayer excitons.[69–72] This is shown in Fig.

1.11. In 2D semiconductor materials, it is possible to generate bound electron–hole

pairs in the same layer, i.e., the intralayer excitons, or with the electrons confined

in one layer and the holes in an adjacent layer leading to the interlayer excitons.

Owing to weaker Coulomb binding, the interlayer excitons have a larger spatial

extent than the intralayer excitons, and thus possess a large static dipole moment.

Interlayer excitons are predominant in the hetero-bilayers obtained out of seamless

stacking of the semiconducting transitional metal dichalcogenides (TMDs) without

lattice mismatch, e.g., MoSe2/WSe2. More discussion on such heterostructures is
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Figure 1.11: Schematic representation of (a) intralayer and (b) interlayer
excitons in the bilayer semiconductor material.

relegated to the next subsection.

1.8.2 Transfer of excitons

Transfer of excitons between the neighbouring molecular sites takes place through

either of the two main mechanisms, viz., Förster or Dexter,[73, 74] presented

in Fig. 1.12. In the Förster process, energy exchange takes place between the

donor and acceptor molecules which, however, requires a significant overlap of

the emission spectrum of the donor molecule with the absorption spectrum of the

acceptor. Thus, this mechanism is also called Förster resonant energy transfer,

which is a primary mechanism for the transfer of singlet excitons when the donor

and acceptor molecules are within a few nanometer ranges. In contrast, a non-

radiative exchange of an electron between donor and acceptor molecules takes place

in the Dexter process that requires a significant overlap of the molecular orbitals

between the molecules. This process enables the transfer of triplet excitons.
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Figure 1.12: Representation of exciton transfer between the donor (D) and ac-
ceptor (A) through (a) Förster mechanism for singlet and (b) Dexter mechanism

for triplet.

1.8.3 Transition Metal Dichalcogenides (TMDs)

Transition metal dichalcogenides (TMDCs) are a new family of 2D semiconductor

materials of the form MX2 with M as a transition metal atom (e.g., Mo or W) and

X, a chalcogen atom (e.g., S, Se or Te).[75, 76] Such materials exhibit a wide range

of attractive properties that include atomic-scale thickness, bandgap, spin-orbit

coupling, optical, electronic and mechanical properties, making them favorable

over other materials like graphene and boron nitride for applications in high-end

semiconductor devices, optoelectronics and next-generation energy harvesting de-

vices. An atomically thin monolayer of TMD (e.g., MoS2, MoSe2, WS2 and WSe2)

typically has a thickness of 6-7 Å, which consists of a hexagonally packed layer of

metal atoms sandwiched between the two layers of chalcogen atoms as depicted

in Fig. 1.13. The intralayer M-X bonds within the monolayer TMD are cova-

lent in nature, whereas the stacked structures in the multi-layer TMD are held
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Figure 1.13: (a) Structure of Transition Metal Dichalcogenides (TMDs), (b)
Bulk TMDs. Figure adapted from Ref. [86]

by a weak van der Waals force, thus allowing an easy cleavage into layer surfaces.

Monolayers of TMDs can be stacked laterally to fabricate planar heterostructures

without much lattice mismatch between them.[77, 78] This is shown in Fig. 1.14.

Also, a monolayer TMD can be stacked to another TMD vertically to obtain a

wide class of bilayer heterostructures of two different MX2 such as MoS2-WSe2,

MoSe2-WS2, MoSe2-WSe2, MoS2-WS2 etc.[79–82] A variety of methods have been

developed to synthesize monolayer or stacked structures of TMDs.[83–85] Two of

the most common methods are mechanical exfoliation from the bulk crystal and

the chemical vapour deposition technique. An interesting property of TMDs is

that a monolayer of TMD (e.g., MoS2, MoSe2, WS2 and WSe2) possesses a direct

bandgap in the range 1-2eV, while the bilayers and multilayers exhibit an indirect

bandgap.[87–89] However, heterostructures formed by the stacking of two differ-

ent TMDs can convert the otherwise an indirect bandgap layered TMD to a direct

type.[90, 91] Also, a strong geometrical confinement and a weak dielectric screening
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Figure 1.14: (a) TMD monolayer on a substrate, (b) Stacking of a second
TMD layer to form (c) Lateral heterostructure, or (d) Vertical heterostructure.

Figure adapted from Ref. [92]

in such 2D materials result in a strong Coulomb interaction leading to a forma-

tion of excitons upon optical excitation. In particular, in a heterobilayer TMD,

the electrons are confined in one layer while the holes are in the opposite layer.

The associated excitons in such heterostructures are termed interlayer excitons

that exhibit intriguing properties that include a long lifetime reaching hundreds

of nanoseconds and a strong permanent dipole moment in the out-of-plane direc-

tion. A novel combination of these features holds a great promise in manipulating

the transport properties of the interlayer excitons in heterobilayer TMDs for the

potential development of excitonic circuits, interlayer excitonic devices, and pos-

sibly a programmable quantum optical device for signal processing and optical

communication with photons and excitons transforming into each other involving

photoluminescence (PL) emission.[93] A study of possible control of interlayer ex-

citon transport through stacked phenylacetylene macrocycles by manipulating the

HMW phase is considered in this work.
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Figure 1.15: (a) Molecular structure of phenylacetylene macrocycle (PAM),
where the peripheral moieties are excluded for simplicity, and (b) Stacked PAM

dimer (PAMD).

1.8.4 Phenylacetylene Macrocycle (PAM)

PAMs are greatly extended π systems comprising multiple phenyl rings with acty-

lene connecting the rings to form a regular molecular framework.[94–96] They are

synthesized by the cyclization of phenylacetylene oligomers.[97] Self-association of

PAMs into dimers and trimers have already been demonstrated in solution involv-

ing a face-to-face, i.e., π − π stacking conformation rather than an edge-to-face

orientation.[98–100] Moreover, the face-to-face stacking could offer a well-ordered

molecular architecture that may be used as the active components in the molec-

ular electronic devices for the reason that a high level of molecular organization

in the organic materials is known to provide high mobility of the charge carri-

ers. A monomer and dimer PAM is shown in Fig. 1.15. The diameter of such a

macrocycle, i.e., the transannular distance between the phenyl ring centres is ∼ 1

nm.[95, 97] Studies reveal that the π − π stacked PAM dimer (PAMD) structures

are energetically favorable over other configurations with an average interplanar
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distance ∼ 0.4 nm.[95] Such a stacked PAM dimer sandwiched between the TMD

electrodes is considered in this work as a potential setup for the possible control

of interlayer exciton transport by manipulating the HMW phase of the excitons

in the stacked macrocycles. This, however, requires a radial magnetic field in the

plane of the macrocycles so that the dipole moment of the interlayer excitons at

each location is perpendicular to the applied magnetic field. The technical details

of such a setup will be discussed later in a separate Chapter.

1.8.5 Photoluminescence

Photoluminescence (PL) is an optical phenomenon in which the molecules or semi-

conductors re-emit light by absorbing the incident light.[101] The PL measure-

ments usually provide the fundamental radiative characteristics of the molecular

systems or semiconductors. Moreover, the study of the spectral distribution of

PL provides the electronic structure of the system as the energy of the emitted

photons is a direct measure of the energy difference between the associated or-

bitals or bands. Such measurements provide an estimate of the HOMO–LUMO

gap in the molecules or the direct energy band gap in the semiconductors. PL

signal generally results from the radiative recombination of the photogenerated

electron-hole pairs, i.e., excitons. For a strong PL signal, radiative recombination

must be dominant, which is much more efficient in the direct band gap semicon-

ductors. A semiconductor material for our purpose that potentially exhibits a

strong PL is a vertically-stacked bilayer 2D heterostructure TMDs that have a
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Figure 1.16: Laser excitation of left TMD electrode generating interlayer
excitons, which diffuse through the PAM dimer to reach the right TMD electrode
where they decay via radiative recombination leading to photoluminescence.

direct band gap in the range of about 0.8 eV to 2.0 eV.[90] A simple illustration

of the setup for the study of the influence of field-controlled exciton transport on

the photoluminescence (PL) resulting from radiative recombination of excitons is

shown in Fig. 1.16. In the input electrode, the photons transform into excitons,

which then diffuse through the intermediate molecular system PAM Dimer into

the output electrode. The exciton transport is controlled by a radial magnetic field

applied to the PAM Dimer. In the output electrode, the excitons decay predom-

inantly through the radiative recombination of electrons and holes. PL studies

can be made for understanding the influence of field-controlled excitons on the

performance of exciton-based optoelectronic devices.
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Chapter2

The Quantum Topological Phase

Shifts: A Unified Framework†

Abstract

The locality of the quantum topological effects, viz., Aharonov-Bohm (AB), Aharonov-

Casher (AC) and He-McKellar-Wilkens (HMW) is presented as the local interac-

tion between the hierarchy of multipole moments of the particles and the respec-

tive orders of external potentials. This leads to a coherent description of various

topological effects as exclusively local phenomena. The absence of force led us to

consider that the AB effect is truly non-classical, which agrees with the under-

standing that the topological effects in the quantum mechanical systems are the

energy-based effects.

†This chapter is based on a research article under review.
Yam P. Rai and Dhurba Rai, “A Unified View On The Quantum Topological Phase Shifts.”
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2.1 Background

A remarkable prediction that a physically observable effect can occur without

a force is certainly a new departure from the classical mechanics where force is

the primary cause for every effect. This is the case with the Aharonov-Bohm

(AB)effect,[1] proposed in 1959, where the interference fringes formed by the inter-

fering charged particles get shifted by the electromagnetic potentials although the

charged particles never come in direct contact with the fields, and hence no force

on the particles. Nevertheless, in the electric (or scalar) AB effect, the charged

particles pass through time-dependent scalar electric potential, while in the mag-

netic (or vector) AB effect, they traverse through spatially varying magnetic vector

potential outside a long current-carrying solenoid. With no force acting on the

particles, the non-classical explanation for the magnetic AB (hereafter AB) effect

is that the vector potential ~A enters into the canonical momentum of the charged

particle leading to the phase shift of the particle wavefunction that affects the

interference fringes. A subtle explanation for this is the non-local interaction be-

tween the charged particle and magnetic field, while the latter remains confined

within the solenoid. Although the very existence of the AB effect is demonstrated

in the electron holography interferometry experiments by Tonomura et al.,[2, 3]

theory behind the effect[1, 4] has generated two long-standing fundamental issues.

First, since ~A is the only quantity present at each location of the moving charged
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particles, the associated interaction must be local. However, if we stick to the clas-

sical concept of electromagnetic field interaction then the AB effect is non-local

with a magnetic field interacting with the charged particles from a finite distance

away. Second, since ~A is causing the local interaction and enters the Schrödinger

equation for the particles, the status of ~A must be elevated to a quantity of fun-

damental importance, from erstwhile, a merely an auxiliary mathematical entity.

This inherently suggests that the magnetic vector potential ~A, though non-gauge

invariant, may be regarded as a physical quantity more fundamental than the

magnetic field ~B.[5]

In fact, one often questions whether the AB effect is a genuine demonstra-

tion of a non-local interaction or just a manifestation of an extraordinary property

of ~A previously not known in classical electrodynamics. Also, the theory behind

the AB effect has far-reaching consequences in quantum mechanics (QM),[1, 4, 6]

however, current theoretical understanding is divided between, the proponents fa-

voring the AB effect as a quantum mechanical effect,[7] while the opponents con-

sider the effect rather classical.[8] Also, what causes the AB effect, as to whether

vector potential[1, 4] or electromagnetic interaction energy,[9–11] including the

question of whether the AB effect is a local [12] or non-local effect[13] is not yet

settled, though some alternative explanations are reported over the time.[14–19]

It must be noted, however, that from the very beginning,[20, 21] the theoretical

explanations for the AB effect are challenged and doubted as a classical effect.

Among others,[22–25] the classical force-based explanation due to Boyer[26, 27]
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got louder in 2000 when he presented a clear and sound semi-classical theory be-

hind the AB effect.[28, 29] Such considerations can be viewed as an elegant attempt

to understand a quantum effect, classically, while the only non-classical idea that

Boyer employed is the de Broglie relation (λ = h/p) for the matter waves. As

envisaged, the charged particle passing by a solenoid S that confines the magnetic

field in its interior exerts a force ~FSq on the solenoid. An equal reactionary force

~FqS (= −~FSq) then acts back on the charged particle causing relative displacement

along the direction of motion that results in a shift in the position of the fringes

in the interference pattern. A true surprise of this reactionary force-based semi-

classical theory is the exact quantum mechanical expression for the phase shift

obtained by AB.[1] This surprising match of phase shift has generated a renewed

interest among the opponents.

Focusing on the issue of whether the AB effect is local or non-local,

we consider electric potential associated with the motional electric field that the

charged particles experience while traversing through a region filled with spatially

varying ~A, and no magnetic fields whatsoever. Such is the region outside a long,

narrow and tightly wound solenoid with current held fixed. Intuitively, if a time

varying vector potential induces an electric field at a location of a particle at

rest, then a particle moving through a region of spatially varying vector potential

perceives an electric field due to a change in vector potential at each location of the

particle in motion. It is with the electric potential associated with the motional

electric field the charged particle couples, leading to the locality of the AB effect
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considered in this work. While one may think that the consideration of motional

electric potential is only an intermediate relief in elucidating the locality of the

AB effect, however, it provides a firm ground for understanding other various

topological phases as exclusively local effects. Also, the consideration makes some

of the prevailing notions in the theory of AB effect, rather secondary. These include

the back-action reactionary force[28] and the magnetic interaction energy,[7, 10] as

both require a magnetic field of the moving charged particles to interact with the

solenoid. The reactionary force corresponding to the magnetic interaction energy is

the basis of Boyer’s semi-classical theory of phase shift.[27, 28] However, a detailed

study has found the variation of magnetic interaction energy too insignificant to

cause any reactionary force on the particle thereby making the region outside

the solenoid essentially force-free,[7] which could be one of the possible reasons

leading to the null result in a time delay experiment.[30] Amid this setback, some

proponents favoring the AB effect as a purely non-classical but local effect insist

that it is the local magnetic field interaction energy that causes the phase shift.

The phase acquired by the charged particles is given by the time integral of the

interaction energy.[10–12]

2.2 Scope of the Work

In this work, we provide insight into the local coupling of a charge with motional

electric potential leading to the AB effect, thereby avoiding the complexity and the

question of non-locality,[13] field penetration,[12] shielding efficiency,[12] magnetic
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interaction energy,[7, 10, 12] and the back-action force on the particles.[28, 29]

In so far as shielding is concerned, the AB effect is a case of a perfect shielding

with no fields reaching each other; the moving charged particle and the current-

carrying solenoid.[31] However, in the case of an imperfect shielding, the magnetic

field of the moving charge may reach the solenoid, though the magnetic field of

the solenoid remains confined within its interior. As a result, the current-carrying

solenoid experiences a Lorentz force and the reactionary force acts on the moving

charge.[28, 29] When calculated, the transverse components of the force are found

to be significant in comparison to the longitudinal components. Interestingly, the

transverse components in each interfering path act along the same direction. These

deflecting transverse forces, however, cause the entire envelope of the interference

pattern to shift but this is not the AB effect wherein the position of the fringes

shifts within the envelope of the interference pattern when a confined magnetic

flux is introduced between the interfering paths.[27, 32] This led us to consider

that the AB effect is the case of a perfect shielding with no classical counterpart,

which otherwise could have been demonstrated as due to force on the charged

particles. Thus, discarding the force-based approach,[28, 29] we here consider the

interaction energy approach discussed in the literature,[7, 9–12] however, with a

subtle conceptual difference that in our consideration, the interaction energy is that

associated with the local coupling of charge with the motional electric potential

outside the solenoid.

This chapter is structured as follows. In Sec. 4.3, we outline the different
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topological phases and briefly review their duality connections to the AB effect

with due attention to the dual AB effect. In Sec. 4.4, we address the persisting

issues of the AB effect. Based on the local charge-potential interaction, we provide

a generalized insight into the persisting issues in question encompassing the other

topological effects. In Sec. 4.5, we discuss the AB setup for the case of perfect

and imperfect shielding of the magnetic fields. Phase shift even in the ideal case

of a perfect shielding led us to consider that the AB phase shift is not a classical

effect. The last section gives the summary of the work.

2.3 Different Topological Phases and their Rela-

tion to the AB Phase Shift

Two years after the marvelous and conclusive experimental demonstration of the

AB effect,[3] Aharonov and Casher,[33] in 1984, predicted analogous phase dif-

ference between the counter-propagating neutral particles with non-zero magnetic

moment ~m in a radial electric field ~E produced by a line of electric charges. Yet

another, dual effect, for an electric dipole moment ~d moving around a radial mag-

netic field ~B is predicted by He and McKellar in 1993,[34] and independently

by Wilkens in 1994.[35] In an attempt at providing a unified description of the

AB, Aharonov-Casher (AC) and He-Mckellar-Wilkens (HMW) effects, Dowling

et al.[36] analyzed the Maxwell electromagnetic duality relations between these

effects and predicted a companion dual Aharonov-Bohm (DAB) effect for the
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Figure 2.1: Different quantum topological phases.

moving magnetic monopoles. All these effects have now been experimentally

verified,[3, 37–39] including the DAB with magnetic fluxon which,[40] however,

is viewed as the manifestation of the AC effect.[40, 41] The defining property of

these effects is that the phase difference is independent of the velocity of the par-

ticles which makes it topological in nature with no force acting on the particles

whatsoever. It must be noted, however, that in the AC/HMW effects, the neutral

particles possessing magnetic/electric dipole moments do pass through the elec-

tric/magnetic fields, while in the AB/DAB effects, the electric/magnetic charged

particles (q, g) pass through the field-free region around the confined magnetic/-

electric fluxes, which makes them a unique pair of dual topological effects. A chart

of different topological phases is shown in Fig. 2.1. Of interest to us here is the

duality relationship between the four topological phases with due attention to the

DAB phase shift of fluxon (Φ0) as this can be exploited for controlling the motion

of fluxon in the fluxon-based superconducting devices.[42–44] The electromagnetic

duality relationship between the AC phase, φAC = (1/~c2)
∮

(~m× ~E) · ~dl, and the

HMW phase, φHMW = (1/~)
∮

( ~B×~d)·~dl, is well known for the pair transformations

consisting of the fields and moments, i.e., ( ~E → c ~B, ~m → −c~d) and (c ~B → − ~E,
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c~d → ~m). Similar duality pair transformations involving source charges (q, g)

(that are connected by the Dirac quantization condition, qg/2πε0c
2 = n~), viz.,

(c ~B → − ~E, q → cε0Φ0) and ( ~E → c ~B, cε0Φ0 → −q) would connect the AB phase,

φAB =
q

~

∫
~B · ~ds, (2.1)

to the DAB phase in a physically accessible form,

φDAB = −ε0Φ0

~

∫
~E · ~ds, (2.2)

where Φ0 = h/q is a unit flux quantum, i.e., a fluxon, which can be considered

as a quantum particle[40] that manifests as a localized magnetic vortex in the

superconductors exposed to the external magnetic fields.[45] The DAB phase shift

in this form for the fluxon in motion around a confined electric field is a true dual

AB effect that may be exploited in the interference-based superconducting device

setups.[40, 46] From the theoretical standpoint, the DAB phase shift expressed in

Eq. (2.2) is more attractive than the one that employs magnetic monopole and/or

electric vector potential.[36, 40, 46]

To make the connection between the AB and AC phase shifts, and that

between DAB and HMW, we write the AC and HMW phase shifts in the surface

integral forms

φAC =
1

~c2

∫
(~∇× (~m× ~E)) · ~ds, (2.3)
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and

φHMW =
1

~

∫
(~∇× ( ~B × ~d)) · ~ds. (2.4)

For the constant moments (~m, ~d) that move in a plane perpendicular to the line

of charges (q, g) producing cylindrically symmetric radial fields ( ~E, ~B) ∼ (1/r)r̂,

all other terms in the expansion of the curls

~∇× (~m× ~E) = ( ~E · ~∇)~m− ~E(~∇ · ~m)− (~m · ~∇) ~E + ~m(~∇ · ~E), (2.5)

~∇× ( ~B × ~d) = (~d · ~∇) ~B − ~d(~∇ · ~B)− ( ~B · ~∇)~d+ ~B(~∇ · ~d), (2.6)

vanish except ~m(~∇ · ~E) and ~d(~∇ · ~B). The terms, (~m · ~∇) ~E and (~d · ~∇) ~B vanish

because the fields do not vary in the dipole direction. It is evident that with the

replacements, ~m(~∇ · ~E) by −c2ε0Φ0
~E, and ~d(~∇ · ~B) by −q ~B, in conjunction with

the duality transformations (c ~B → − ~E, q → cε0Φ0) and ( ~E → c ~B, cε0Φ0 → −q),

the RHS in the above expansions reduce to

~∇× (~m× ~E) = ~m(~∇ · ~E) ≡ −c2ε0Φ0
~E → −c2(−q/c)(c ~B)), (2.7)

~∇× ( ~B × ~d) = −~d(~∇ · ~B) ≡ q ~B → (cε0Φ0)(− ~E/c). (2.8)

Physically, this can be understood as a “reference frame correspondence”. For in-

stance, to an observer at rest on a frame attached to a charge q, whose circulation

produces the current and the associated magnetic moment ~m in the AC setup,

the line of charge producing a cylindrically radial electric field ~E in the AC setup
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Figure 2.2: Relations among the four quantum topological phases. The pair
φ(AB,DAB) are related by duality transformations, and so are φ(AC,HMW ), while
φ(AB,AC) and φ(DAB,HMW ) are related through the “reference frame correspon-

dence” as the charge and moment are not related by a dual rotation.

appears as a column of circulating charge with the induced magnetic field ~B con-

fined inside. This essentially corresponds to a charge q encircling the solenoid, i.e.,

the AB configuration. Also, with a consideration of the magnetic monopoles that

entail a perfect symmetry between the electricity and magnetism, the correspon-

dence between the HMW and DAB can be inferred. Thus, with Eqs. (2.7, 2.8),

the (AC, HMW) phase shifts in Eqs. (2.3, 2.4) reduce correspondingly to the (AB,

DAB) phase shifts in Eqs. (2.1, 2.2). So, unlike (AB↔DAB) and (AC↔HMW)

that are related by a dual rotation, (AC→AB) and (HMW→DAB) are related by

a “reference frame correspondence”, Eqs. (2.7, 2.8).

We summarize the relations among the four topological phases in a

crossed-square diagram shown in Fig. 2.2. Entries (q, ~d) and (Φ0, ~m) at rest

in the inner square produce the corresponding fields ~E and ~B, in which the entries

(Φ0, ~m) and (q, ~d) acquire topological phase when set in motion. From these, all
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else would follow, and we believe that there should be no more topological phases

other than that associated with the higher moments.[47] In the following section,

we provide generalized insight into the persisting issues of the AB effect encom-

passing the AC and HMW effects, and provide the energy-based interpretation.

2.4 Persisting Issues in the AB Effect and the

Energy-based Interpretation

Here we provide insights into the persisting issues concerning the AB effect from

the perspective of interaction energy. The issues are presented in Fig. 2.3. Firstly,

considering the magnetic field as the only existing interactive field, the AB phase

shift can only be understood in terms of action at a distance, which violates

the principle of locality. The AB effect thus appears to manifest non-locality

which, however, is different from that associated with the violation of the Bell

inequalities.[48] Nevertheless, a quantitative understanding of non-locality has re-

mained elusive so far.[49–51] Instead, as locally only vector potential ~A is present,

we stress on the local interaction between the hierarchy of multipole moments

(charge, moments, quadrupole) of the particle with the respective orders of exter-

nal potentials (potential, field, field-gradients). This leads to a coherent descrip-

tion of various topological effects as exclusively local phenomena with the asso-

ciated interaction energy, either non-gauge invariant, i.e., U = qV ′, for the AB

phase, or gauge invariant, e.g., U = −~m · ~E ′, for the AC phase, and U = −~d · ~B′,
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Figure 2.3: Persisting issues in the AB effect.

for the HMW phase, where prime labels the local motional potential and fields.

It must be noted that the vector potential ~A that is generally accepted as non-

unique has nothing to do with the question of locality. Nevertheless, in a strict

sense, ~A can be fixed employing some convenient gauge fixing conditions, e.g.,

Coulomb gauge, ~∇ · ~A = 0. An alternative to this is to gauge transform ~A for an

optimum value ~Aopt = ~A + ~∇χopt, that makes the magnetic field energy density

1
2
~Aopt · ~JSource, equal to that otherwise obtained from ~B, i.e., 1

2µ0
| ~B|2, where ~JSource

is the constant current density of the source of the magnetic field. However, the re-

sult differs substantially when the energy density is calculated exclusively from ~A,

thereby allowing a non-zero value for the energy density outside the solenoid.[52]

Secondly, the above consideration of local interaction provides better insight into

the issue as to whether or not potential is more fundamental than the field. In the

AB effect, it is the charge q of the particle that couples with the motional electric

potential V ′, which can be expressed in terms of the vector potential ~A. Viewed

in a lab-frame, the current density ~Jq associated with the moving charge couples

with the vector potential ~A. So, it is natural that the vector potential ~A is more

fundamental than the field ~B. However, in the case of the AC/HMW effects, it
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is the magnetic/electric dipole moment that couples with the motional magnet-

ic/electric field, and thus the field is more important. Further justification can be

found considering a quadrupole moment that couples with the field gradients, and

thus the field gradients are more important than the field or potential.[35] Finally,

any attempt to avoid the problem of action at a distance entails accepting the

vector potential ~A as a physical field that influences the phase of the wavefunc-

tion of the charged particle which, however, is not unique (not gauge invariant)

and therefore not considered a physical observable. Nevertheless, ~A can be fixed

through a gauge fixing condition, or more rigorously through a gauge transfor-

mation requiring the magnetic energy density calculated from ~A alone is equal

to that obtained independently from ~B within a specified tolerance. We stress

that the vector potential ~A is a fuzzy quantity (sometimes even called a fuzzy

current, Ref. [53]) due to its imprecise value consequent to the tolerance limit in

the determination of energy density. We will not push this perception too far, but

it facilitates comprehension of the physical reality of ~A. Interestingly, we note in

passing that some non-gauge invariant quantities can be associated with physical

observables.[54] We summarize the afore-discussed issues encompassing the AC

and HMW effects in Table 2.1.

Focusing on the interaction leading to the AB phase effect, we note that the

most general expression for the electric field experienced by a particle moving

62



Chapter 2 Sec.2.4

Table 2.1: Persisting issues in the AB effect from the perspective of the inter-
action energy including the AC and HMW effects. The corresponding potential
and fields involved are V ′ = −~v · ~A, ~E′ = ~v × ~B and ~B′ = −~v × ~E/c2. Refer to

the text for details.

Issues Energy-based interpretation

(i) Locality Local interaction with potential/field
(a) non-gauge invariant interaction,

e.g., AB effect.
(b) gauge invariant interaction,

e.g., AC/HMW effects.
(ii) Potential/Field Depends on multipole moments

(a) q couples with potential V ′ = −~v · ~A,

⇒ ~A is important in AB effect.

(b) (~m, ~d) couples with field ( ~B′, ~E ′),
⇒ Field important in AC/HMW.

(iii) Physical reality Local interaction with

(a) a seemingly fuzzy quantity ~A
in the AB effect.

(b) the ordinary quantities ( ~E, ~B)
in the AC/HMW effects.

with velocity ~v is

~E = −~∇V − ∂ ~A

∂t
+ ~v × ~B, (2.9)

where V is electric potential. The last term represents an electric field, ~E ′ = ~v× ~B,

due to relative motion in magnetic field ~B = ~∇ × ~A, which forms the basis of

the Lorentz force ~F = q ~E ′ = q(~v × ~B), acting on the charged particle. Since

~∇(~v · ~A) = ~v × ~B + (~v · ~∇) ~A, the electric field in Eq. (2.9) can also be expressed

in the form

~E = −~∇V − d ~A

dt
+ ~∇(~v · ~A). (2.10)
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In this form, the second term represents the overall time dependence of ~A. For the

AB setup, V = 0, ∂ ~A
∂t

= 0, while the convective derivative leads to d ~A
dt

= (~v · ~∇) ~A.

Also, since ~v× ~B = 0 as ~B = 0 outside the solenoid, ~∇(~v · ~A) = (~v · ~∇) ~A. The AB

setup is such that d ~A
dt

= ~∇(~v · ~A) = (~v · ~∇) ~A. Thus, there is no electromagnetic field,

i.e., ~E = 0, ~B = 0, outside the solenoid, and hence no force acting on the moving

charged particle. What is important to note here is that the charge q couples with

the motional potential V ′ = −~v · ~A, associated with the motional electric field,

represented by the third term in Eq. (2.10). The interaction energy corresponding

to the charge-potential coupling is U = qV ′ = −q~v · ~A and the classical Lagrangian

of the charge is Lclassical = T − U = 1/2mv2 + q~v · ~A = 1/2mv2 + Lint. Following

the path integral formulation of QM, the transition amplitude for a particle to go

from point ‘a’ to ‘b’, bypassing the solenoid along a certain path Γ, is the same as

the transition amplitude if it would go along the same path with solenoid removed,

however, with a multiplicative phase factor exp(i/~Sint), determined by the action,

Sint =
∫ b
a,Γ
Lint dt =

∫ b
a,Γ

∂
∂~v
Lint · ~dl. In the wave mechanics, this is the phase picked

up by the wavefunction of the particle that can be inferred by comparing the

solutions of the Schrödinger equations in the absence and presence of the solenoid.

Thus, the phase difference between the charged particles moving from point ‘a’ to

‘b’ along the paths (Γ,Γ′) enclosing the solenoid is φ = φΓ − φΓ′ = (q/~)
∮
~A · ~dl,

which is the AB phase shift in Eq. (2.1).
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2.5 The AB setup with Perfect and Imperfect

Shielding

It is natural that a moving charge induces a magnetic field, however, its consider-

ation in the study of the AB effect purely depends on the model representing the

AB setup. Ignoring the magnetic field due to a moving charge is equivalent to a

case of a perfect shielding, so that neither the field due to a moving charge reaches

the solenoid, nor the field of the solenoid leaks out to reach the moving charge as

this is the defining property of a long, narrow and tightly wound solenoid. How-

ever, in the case of an imperfect shielding, the magnetic field of the moving charge

may reach the solenoid, thereby influencing the current in the solenoid and the

field within, with a possible back action thereof. We here begin with the perfect

shielding case.

2.5.1 Perfect shielding

In this case, the magnetic field of the moving charged particles does not reach the

solenoid. Also, anyway, the magnetic field inside the long solenoid will not leak

into its exterior to interact with the interfering charges. So, in such a perfect setup,

there is no external force on the solenoid, ~FAction = 0, and hence, no reaction force

on the charge, ~FReaction = 0. Also, there is no electromagnetic force on the moving

charge as each term in the most general expression of electric field (Eq. (2.9)) is
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identically zero for the AB setup, so ~Fq = q ~E = 0. However, as the interaction

energy corresponding to the charge-potential coupling is velocity dependent, i.e.,

U = qV ′ = −q~v · ~A, one may be tempted to determine the force on the charge as

~Fq = −~∇U + d
dt

(
∂U
∂~v

)
which, however, is just q ~E. Thus, there is no force acting on

the charge. The AB effect in this case is purely a non-classical effect associated

with the influence of charge-potential coupling on the phase picked up by the

wavefunction of the charged particles that affect the interference fringes. In so

far as shielding is concerned, some even doubt that the shielding in Tonomura’s

experiment acts only one way preventing the leakage of internal static field, while

ineffective in shielding the external time-varying magnetic field of the moving

charged particles.[12] We here stress that since the charged particles remain outside

the solenoid, the consideration of local interaction of charge with motional electric

potential is certainly a better choice over that based on the interaction energy

resulting from the overlap of magnetic fields inside the solenoid.[7, 10, 12] Perhaps

this magnetic field interaction energy is not accessible to the charged particles

moving outside the solenoid.

2.5.2 Imperfect shielding

In this case, the magnetic field ~Bq of the moving charged particles reaches the

current-carrying solenoid, and thus the solenoid experiences a force. This is viewed

as the force exerted by the moving charge on the solenoid, which is estimated to
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be,[21, 30]

~FAction = −q~∇(~v · ~A) = −qd
~A

dt
. (2.11)

In obtaining the second equality, use has been made of the fact that ~B = 0 outside

the solenoid and the dependence of ~A on time t is only implicit. Microscopically,

this force perturbs the motion of the electrons in the solenoid and thus the current

through the solenoid changes. This results in a change in the magnetic moment

~mS of the solenoid and thus the interaction energy corresponding to the dipole-

field coupling, UMB = −~mS · ~Bq = −q~v · ~A, changes.[8] A simple derivation of the

interaction energy UMB, i.e., the dipole-field coupling energy is as follows.

Consider a charge q moving non-relativistically past a long, narrow and

tightly wound current-carrying solenoid S positioned at the origin. Assuming

that the magnetic field inside the solenoid remains confined exclusively within its

volume (other than those at the two ends), the charge moves in a field-free region,

and thus no interaction in the exterior of the solenoid. However, this is not the case

for an external magnetic field that may penetrate the solenoid, thereby interacting

with the field within the solenoid. The interaction energy can be calculated, either

as magnetic overlap energy UBB =
∫

( ~Bq · ~BS)dτ ,[7, 8] or as dipole-field coupling,

UMB = −~mS · ~Bq.[8] We here choose the latter as it is technically simple and easy

to evaluate than the overlap energy involving volume integration.

The charge under consideration moves with velocity ~v in the XY plane
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while the solenoid is stationary with its axis coinciding with the z-axis. Viewed

from the perspective of charge, the solenoid passes by the charge with velocity

−~v, which facilitates an easy determination of the geometric relations required in

the calculation of the interaction energy. This is shown in Fig. 2.4 with solenoid

passing by the charge q at a distance r (� R) away from the charge. The magnetic

field that the solenoid perceives at a location (r′ = r/sinθ, θ) is

~Bq = −µ0q

4π

~v × r̂′
r′2

= −µ0q

4π

~v × r̂′
r2

sin2θ. (2.12)

If n is the number of turns per unit length of the solenoid, then the elemental length

|dz| = rdθ/sin2θ of the solenoid has n|dz| number of turns. Thus, the magnetic

moment of the elemental length of the solenoid of radius R carrying a constant

current I is ~dm = n|dz|IπR2ẑ . Therefore, the interaction energy corresponding

to the coupling of ~dm with ~Bq in the rest frame of the solenoid is

dUMB = − ~dm · ~Bq,

= −nµ0

4r
qIR2~v · (ẑ × r̂′) dθ,

= −nµ0

4r
qIR2~v · φ̂ sinθ dθ, (2.13)

and the net interaction energy is

UMB =

∫ θ=π

θ=0

dUMB = −qµ0

2r
nIR2~v · φ̂ = −q~v · ~A, (2.14)
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Figure 2.4: Schematic view of relative motion of a solenoid w.r.t a charged
particle q. For the charged particle moving with velocity ~v around the solenoid

at rest, the solenoid moves with velocity −~v w.r.t the charged particle.

where ~A = µ0
2r
nIR2φ̂ is identified as the vector potential outside (r > R) the

solenoid. The force associated with this dipole-field coupling energy is

~FMB = −~∇UMB +
d

dt

(
∂UMB

∂~v

)
,

= q~∇(~v · ~A)− qd
~A

dt
. (2.15)

Also, the magnetic field ~Bq that overlaps with the magnetic field ~BS inside the

solenoid changes. This results in a change in the field-field interaction energy,

UBB =
∫ (

~Bq · ~BS

)
dτ = q~v · ~A.[7, 8] The associated force is

~FBB = −~∇UBB +
d

dt

(
∂UBB
∂~v

)
,

= −q~∇(~v · ~A) + q
d ~A

dt
. (2.16)
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Therefore, the total force on the solenoid is

~FS,total = ~FAction + ~FMB + ~FBB = −qd
~A

dt
. (2.17)

Assuming that Newton’s third law holds good, the reaction force is

~FReaction = −~FS,total = q
d ~A

dt
. (2.18)

Therefore, the net force acting on the charge is

~F = ~Fq + ~FReaction,

= q
d ~A

dt
= q~∇(~v · ~A). (2.19)

Thus, there is a force on the charged particle in the case of imperfect shielding.

Boyer estimated this force considering UBB alone, i.e., ~F = ~FReaction = −~FBB,

with ~FBB = −~∇UBB = −q~∇(~v · ~A).[28] At this juncture, one may wonder if the

AB phase shift φAB can be related to the force ~F on the charged particle. We

answer this in the negative by analyzing the components of the force for which we

consider the charged particle q to move with a velocity ~v = vxî + vy ĵ, in the XY

plane, bypassing the solenoid placed at the origin (0, 0) with its axis coinciding

the z-axis. For a long solenoid of cross-sectional area A = πR2, with the magnetic

field ~B0 = µ0nIẑ, confined within its volume, the vector potential outside the
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solenoid (r > R) is

~A =
B0A
2πr

φ̂ =
B0A
2πr2

(−yî+ xĵ). (2.20)

The force components, Fx = q∇x(~v · ~A) and Fy = q∇y(~v · ~A), are thus

Fx =
qB0A

2π

[
1

(x2 + y2)

(
− y∂vx

∂x
+ x

∂vy
∂x

)
+

2xyvx + (y2 − x2)vy
(x2 + y2)2

]
, (2.21)

Fy =
qB0A

2π

[
1

(x2 + y2)

(
− y∂vx

∂y
+ x

∂vy
∂y

)
+
−2xyvy + (y2 − x2)vx

(x2 + y2)2

]
. (2.22)

For a constant velocity ~v = v0ĵ, Eq. (2.22) reduces to that in Refs. [28, 30],

however, the opposite sign indicates that ~F is a reactionary force. Moreover, as

the particles approach the solenoid from laterally opposite sides ±x, the transverse

components F±x of the force become increasingly significant over its longitudinal

component Fy, which remains true even if we consider the effect of the force

on the velocity v0, though F+x 6= F−x in that case. Precisely at y = 0 plane,

F±x = − qB0A
2π

v0
x2

, while Fy = 0. Consequently, the charged particles suffer lateral

displacement causing the entire envelope of the interference pattern to shift, but

this is not the AB effect wherein the position of the fringes shift within the envelope

of the interference pattern when a confined magnetic flux is introduced between

the interfering paths.[27, 32] Boyer’s analysis of longitudinal component Fy, while

completely ignoring the deflecting transverse component Fx, would result in a

relative displacement between the charges passing on the opposite sides of the
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solenoid that precisely determines the AB phase shift.[28] This surprising match

between the reactionary force-based phase shift and the genuine AB phase shift led

to performing an experiment aimed at measuring the possible time delay between

the particles traversing opposite sides of the solenoid, however, the null results

proved sufficient to rule out any forces that otherwise could have acted on the

particle.[30] The genuine AB phase shift corresponding to a perfect shielding case

(AB type I effect,[55]) is thus not a classical effect based on the reactionary force

associated with the imperfect shielding (Boyer type II effect,[26]).

Our stance here is that all the AB experiments performed to date, either

represent perfect shielding, thereby no force and time delay, or the observed fringe

shift, though unlikely, is the entire interference pattern shift due to deflecting

transverse force with no time delay that may otherwise arise from the longitudinal

force. Should there be a genuine phase shift, no force should act on a particle

whatsoever, while all force-based effects manifest the entire interference pattern

shift rather than a shift in the position of the fringes within the interference pat-

tern. We summarize the physical effects of various combinations of force and field

in Table 2.2.

Table 2.2: Physical effects for various combinations of field and force. See
Refs. [26, 55, 56].

AB Boyer
Type I Type II Type I Type II

Fields ~E, ~B = 0 ~E, ~B 6= 0 ~E, ~B 6= 0 ~E, ~B = 0

Force ~F = 0 ~F = 0 ~F 6= 0 ~F 6= 0
Effects AB, AC, Pattern Fringe

DAB HMW shift shift
Shielding Perfect – – Imperfect
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However, we stress that the Boyer type II effect is the entire interference

pattern shift due to the deflecting transverse force that plays a decisive role in the

case of an imperfect shielding.

2.6 Summary and Concluding Remarks

In summary, we consider the hierarchical local interaction of the multipole mo-

ments of the particles with the various orders of potential, leading to the various

topological phases. The consideration leads to a coherent description of various

topological phases as exclusively local effects. Furthermore, the consideration aids

in the quest to determine whether the potential or field is more important. The

AB effect is due to the local interaction of charge with electric potential associated

with the motional electric field, so the potential is more important than the field.

However, the AC and HMW effects are associated with the local interaction of the

dipole moment with the field, so the field is important. In an attempt at general-

izing the duality relations among the various effects, the pair effects (AB & AC)

and (DAB & HMW) are found to relate only through “correspondence”, as the

charge and moment are not related by a dual rotation. It turns out that among

the most studied effects, the AB phase shift is the case of a perfect shielding with

no fields reaching the charged particle and the solenoid, and hence no force on the

charged particles. The absence of force led us to consider that the AB phase shift

is truly a non-classical effect, which further suggests that the AB phase shift is

an energy-based effect rather than a force-based effect. However, the reactionary
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force in the case of imperfect shielding causes the entire envelope of the interfer-

ence pattern to shift which, however, is not the AB effect wherein the position of

the fringes shifts within the envelope of the interference pattern.
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Chapter3

Quantum Mechanical Phase of a

Moving Electric Dipole in a Static

Magnetic Field†

Abstract

The quantum mechanical phase of an electric dipole moving in a static magnetic

field is studied in the light of the original concept proposed by He and McKellar

in 1993, and independently by Wilkens in 1994. An elementary approach to the

alternative derivation of the He-McKellar-Wilkens (HMW) phase is presented. It

is shown that the Lagrangian of the moving dipole with explicit consideration of

the interaction between the current associated with the moving electric dipole and

the magnetic vector potential would lead to the same expression for the phase

†This chapter is based on a research article:
Yam P. Rai and Dhurba Rai, “On the He–McKellar–Wilkens phase of an electric dipole”, Ann.
Phys. 383, 196 (2017).
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shift. Conditions for the observation of the HMW phase are investigated, and a

practical setup is proposed for its observation with the magnetic field alone.
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3.1 Background

A startling prediction of a new quantum effect requires an in-depth understand-

ing of previously unknown or unaccounted interaction mechanisms. In 1959,

Aharonov and Bohm (AB) [1] predicted the phase difference between the counter-

propagating electrons through a magnetic field-free region outside a long current-

carrying solenoid. The AB phase is φAB = 1
~

∮
~A · ~dl, where ~A is a circumferential

vector potential outside the long current-carrying solenoid. In contrast to being,

the magnetic vector potential, a mere supplementary mathematical object intro-

duced for the description of magnetic fields, the interpretation of this quantum

phenomenon highlighted the fundamental importance of vector potential in quan-

tum mechanics. The AB effect not only revealed the physical reality of vector

potential but also engendered a whole set of analogous quantum effects like the

Aharonov-Casher (AC) effect [2], Casella effect [3], He-McKellar-Wilkens (HMW)

effect [4, 5] and the associated additional effect studied by Spavieri.[6–8] In an

attempt at providing a unified description of these effects, Dowling et al.[9] estab-

lished the Maxwell electromagnetic duality relations between the various quantum

mechanical phase shift effects. These effects have been experimentally verified in-

cluding the HMW phase shift that was measured a decade ago by Lepoutre et

al.[10–12]

Our interest in this work is the HMW phase collected by a moving elec-

tric dipole ~d in a static magnetic field ~B given by φHMW = 1
~

∮ (
~B × ~d

)
· ~dl. A
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Figure 3.1: The HMW setup wherein the counter-propagating electric dipoles
~d in a radial magnetic field ~B ∼ r̂/r produced by a line of magnetic monopoles
qm acquire a phase difference φHMW independent of the shape of the path and

the velocity of the moving dipoles. Figure adapted from Ref. [10].

schematic diagram of the HMW setup is presented in Fig. 3.1. It took almost two

decades for experimental observation of this phase after its first prediction by He

and McKellar in 1993,[4] and independently by Wilkens in 1994.[5] The principal

obstacle to the experimental test of the HMW phase was the requirement of a radial

magnetic field necessary for zero classical force and torque on the moving dipole,

[5, 13–17] i.e., force ~F = ~v×
{
~∇×

(
~B× ~d

)}
= 0 and torque ~τ = ~d×

(
~v× ~B

)
= 0,

where ~v is the velocity of the moving dipole. Starting with Wilkens’ configuration

[5] consisting of a pierced magnetic sheet mimicking the required radial magnetic

field confined within the hole, varieties of field configurations [9, 13, 18–20] were

proposed for experimental observation of the HMW phase. It is only in 2012,

Lepoutre et al.[10] observed the long-sought HMW effect in a polarized Li atom

interferometer with an interaction region consisting of the electric and magnetic

fields similar to that initially proposed by Wei et al.[18] A practical setup em-

ployed by Lepoutre et al. is shown in Fig. 3.2 where crossed-electric and magnetic
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Figure 3.2: Experimental setup due to Lepoutre et al.[11] consisting of Mach-
Zehnder atom interferometer. (a) The interaction region where the Li atomic
beams (dotted lines) interact in the presence of the crossed-electric and mag-
netic fields. (b)The electric fields are produced by two parallel plate capacitors
through which the interfering atomic beams pass. Two rectangular coils labelled

as ±I (electric currents) produce the vertical magnetic field.

fields are used for the observation of the HMW phase. The measured value of the

HMW phase shift of 27 mrad is reported to be 31% larger than the expected value

and the discrepancy is attributed to the limitations of their experimental model

involves extraction of the HMW phase which the Li atoms pickup in addition to

that due to the stray effects, viz., AC, Zeeman, and Stark effects. However, there

is a significant improvement in the determination of the HMW phase in the sub-

sequent measurements. [11, 12] Also recently, Chen et al.[21] have proposed a dc

SQUID-like device to test the HMW effect in the interference of the excitons in
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the bilayer exciton condensates observed in semiconductor heterostructures and

bilayer graphene. No other effects contribute to the interference making the setup

unique for the study of the HMW effect in the excitonic interference.

On the theoretical front, Spavieri in 1998, made a critical examination

of the HMW phase.[6] He found that a rigorous gauge-invariant Lagrangian of

the moving electric dipole leads to an additional term 1
~

∮
~∇
(
~d · ~A

)
· ~dl in the

HMW phase. This additional term, hereafter labeled as φS, is topological in

nature as it does not depend on the shape of the encircling path and it is non-

dispersive, i.e., independent of particle velocity. The question of whether or not

φS even exists has been debated. [7, 22] It is argued in Ref. [7] that φS is non-

zero in the Wilkens’ configuration while the total phase shift φ = φHMW + φS

is zero. Looking for a more practical scheme for experimental verification of the

HMW phase, Tkachuk [19] considered an electric dipole encircling a long and

thin ferromagnetic wire magnetized in opposite direction from the endpoints with

magnitude varying linearly along the wire. The central part of such a magnetized

wire would essentially produce a radial magnetic field suitable for testing the

HMW phase. The delicious ingenuity of the proposed configuration lies in the

fact that the additional term in the HMW phase is identically zero, i.e., φS =

1
~

∮
~∇
(
~d · ~A

)
· ~dl = 0 for any orientation of the electric dipole ~d. At this juncture,

it must be noted however that a term so profound in the analysis must have some

significance, and thus deserve a detailed investigation.

84



Chapter 3 Sec.3.2

3.2 Scope of the Work

The work aims to investigate the interaction of moving electric dipole with static

magnetic field ~B and the associated vector potential ~A, thereby revealing the phys-

ical origin of the additional term in the HMW phase, and explore situations where

this is non-zero. It is both interesting and important to consider the way such

an additional term, so prominent in the analysis, can be verified. This work is

also intended to explore the various field configurations underscoring the necessity

of inverse radial dependence of magnetic field for the observation of the HMW

phase. We here propose a practical setup that provides essentially a radial mag-

netic field with inverse radial dependence that is important for the observation

of the HMW effect. The setup is intended to serve a two-fold purpose: first, to

observe the original HMW phase with a magnetic field alone, and second, to de-

termine the HMW phase avoiding the associated stray effects when simultaneous

crossed-electric and magnetic fields are used. This chapter is organized as follows.

In Sec. 3.3, we present an elementary approach to realize the HMW phase. In

Sec. 3.4, we re-derive the HMW phase using the Lagrangian of an electric dipole

in motion considering explicitly the associated currents. Section 3.5 discusses the

net force and torque on the dipole moving through magnetic field ~B and the as-

sociated vector potential ~A. Sec. 3.6 discusses the HMW phase in various field

configurations. In Sec.3.7, we present the practical setup for the realization of

HMW effect followed by Sec. 3.8 that gives a summary of the work presented in
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this chapter.

3.3 Elementary Approach to the HMW Phase

A unique feature of the various intriguing effects such as Sagnac, AB, AC, and

HMW is the relative phase shift of interfering waves caused by rotation or elec-

tromagnetic interaction. The Sagnac effect is a phase-coherent effect in atom (or

optical) interferometers in which rotation of the interferometer with respect to

an inertial reference frame causes the counter-propagating waves path lengths to

differ by an amount proportional to the angular velocity ω and area S enclosed by

the interfering paths, resulting in an interference fringe shift.[23] The AB effect is

caused by charge q coupling with vector potential ~A in a multiply-connected region

without a magnetic field. The AC effect is caused by the interaction of a magnetic

dipole ~m with the Lorentz transformed effective magnetic field ~B′ ∼= −~v × ~E/c2

in a co-moving frame traversing a magnetic field-free region, just as its Maxwell

counterpart, the HMW effect, is caused by the interaction of an electric dipole ~d

with the Lorentz transformed effective electric field ~E ′ ∼= ~v × ~B in a co-moving

frame traversing an electric field-free region. The phase shifts are expressed as a
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closed line integral of vector fields, i.e.,

φSag =
m

~

∮
~v · ~dl =

2m

~

∫
~ω · ~dS =

2m

~
ωS, (3.1)

φAB =
q

~

∮
~A · ~dl =

q

~

∫
~B · ~dS =

q

~
Φ, (3.2)

φAC =
1

~c2

∮ (
~m× ~E

)
· ~dl, (3.3)

φHMW =
1

~

∮ (
~B × ~d

)
· ~dl. (3.4)

It must be noted here that the Sagnac and AB phases are expressed in the surface

integral form that is directly accessible to experimental measurements. In Eq.

(3.1), m is the inertial mass of a particle (m = h/λc for photon) and ~v is the linear

velocity of rotation of the interferometer,[24] while Φ in Eq. (3.2) is magnetic flux

piercing the surface S. We note in passing that the surface S enclosed by the

closed contour is multiply-connected, and not one-sided manifold (e.g., Möbius

strip) for which Stoke’s theorem is not applicable. The Sagnac-based atom or

optical interferometers provide the most accurate measure of the angular velocity

of a rotating device. In recent years, the Sagnac effect is studied in the context of

electron coherence in mesoscopic rings and carbon nanotube loops, wherein Sagnac

interference is either due to rotation-induced path difference,[25, 26] or because of

band velocity difference between the electrons.[27, 28]

It’s worth noting that the Sagnac phase shift can be obtained from the

AB phase shift using the two-fold analogy between the Coriolis force in the rotating
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frame and the Lorentz force on a charged particle, as well as the canonical mo-

mentum in a rotating frame and the charged particle’s momentum.[29] The hidden

momentumHidden Momentum ~phidden, which is part of the canonical momentum
~p = ∂L/∂~v, determines the Sagnac and AC phases.[30–32] However, as pointed

out by Spavieri,[32] the HMW phase of an electric dipole travelling through a mag-

netic field is determined by electromagnetic momentum ~pem. For (AC, Sagnac)

and (AB, HMW), the interaction energy leading to the aforesaid phases can be

expressed as U = −~v · ~phidden and −~v · ~pem, respectively. The electromagnetic mo-

mentum ~pem of an electric dipole ~d in a magnetic field ~B given by vector potential

~A such that ~B = ~∇ × ~A is ~pem = (~d · ~∇) ~A, and hence the interaction energy is

U = −~v · ~pem = −~v · (~d · ~∇) ~A. The correctness of the interaction energy can,

however, be confirmed by looking at the interaction in the dipole’s rest frame. To

this effect, it must be noted that the interaction cannot be represented solely in

terms of the field ~B since the dipole is travelling through a region where both ~B

and ~A are non-zero. The effective electric field experienced by the electric dipole

is
~̃
E ′ = (~v × ~B) + (~v · ~∇) ~A = ~∇(~v · ~A) because ~A varies at the rate (~v · ~∇) ~A

along the path traversed by the dipole. As a result, the interaction energy is

U = −~d · ~̃E ′ = −(~d · ~∇)(~v · ~A) = −~v · (~d · ~∇) ~A. A simple vector identity is used in

obtaining this expression, and the fact that ~v and ~d are not explicitly dependent on

the x, y, z coordinates has been used. The phase acquired by the circling electric
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dipole as a result of the above interaction is

φ =
1

~

∮
−∂U
∂~v
· ~dl, (3.5)

=
1

~

∮
(~d · ~∇) ~A · ~dl, (3.6)

=
1

~

∮ (
~B × ~d

)
· ~dl +

1

~

∮
~∇
(
~d · ~A

)
· ~dl. (3.7)

This is the HMW phase obtained by Spavieri[6, 7].The very existence of the sec-

ond term in the above HMW phase, i.e., Spavieri term, was debated.[7, 22] As

argued,[22] any closed line integrals of a gradient field ~∇
(
~d · ~A

)
vanish, or equiva-

lently ~∇× ~∇
(
~d · ~A

)
is zero, which however is true when the scalar field

(
~d · ~A

)
is a

single-valued function.[33] However, if ~A is multi-valued, the closed line integrals

of ~∇
(
~d · ~A

)
do not vanish. In a study by Spavieri,[7] it is proven that in the

Wilkens’ configuration of a dipole travelling through a magnetic sheet, the second

term is non-zero while the total shift, i.e., Eq. (3.7) is zero. In Tkachuk’s proposed

setup,[19] the second term is identically zero for any dipole orientation. However,

we are in the view that the second term is merely a mathematical curiosity with

no physical importance. Nevertheless, if a setup with a monotonic gradient of

(~d · ~A) is properly built-in a segment of the interferometer loop, the second term

may take on a non-vanishing value. It’s tempting to think of this in terms of the

gradient of (~d · ~A) in the physically accessible volume of a frustum torus depicted

in Fig. 3.3, which may require a suitable modification to allow for a sharp fall of ~A

at the ends. Any potential implications that may be revealed in various torus field

configurations are discussed in the last chapter concerning the future prospects of
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Figure 3.3: A current-carrying frustum torus with one of the arms of a neutral
particle interferometer passes through it. Magnetic field ~B is contained within
the coil, whereas vector potential ~A has a gradient both in length and cross-

section.

the work carried out in this thesis. We now discuss the origin of the second term

in the following section by deriving the HMW phase from the Lagrangian of the

dipole, considering explicitly the interaction of the currents associated with the

moving dipole with vector potential ~A.

3.4 Lagrangian Approach to the HMW Phase

In the Lagrangian considered by Wilkens [5] and others [13, 15], only the dipole-

field interaction is taken into account. Since the interaction is the same in the rest

frame of the moving dipole as it is in the lab frame, the dipole-field interaction

could be viewed either as ~d · ~E ′ in the rest frame of the dipole, with the Lorentz

transformed field ~E ′ = ~v × ~B, or as ~m′ · ~B interaction in the lab frame, where

~m′ = ~d × ~v. Thus, the Lagrangian of the moving electric dipole in the magnetic
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field is

L =
1

2
mv2 + ~m′ · ~B, (3.8)

=
1

2
mv2 + ~v ·

(
~B × ~d

)
. (3.9)

The canonical momentum is

~p =
∂L

∂~v
= m~v +

(
~B × ~d

)
= ~pmech + ~pem. (3.10)

The phase shift associated with the dipole-field interaction is given by 1
~

∮
~pem · ~dl,

which is the HMW phase expressed in Eq. (3.4). In contrast, Spavieri considered

the charge-potential interaction in the same way as in the AB effect considering

a point charge dipole (±q), and within the dipole approximation, the Lagrangian

of the moving electric dipole is expressed as [6, 7]

L =
1

2
mv2 + ~v ·

[(
~d · ~∇

)
~A
]
. (3.11)

Since, for a constant dipole moment, ~∇
(
~d· ~A
)

=
(
~d× ~B

)
+
(
~d· ~∇

)
~A, the Lagrangian

can be expressed as

L =
1

2
mv2 + ~v ·

[(
~B × ~d

)
+ ~∇

(
~d · ~A

)]
. (3.12)

With the canonical momentum, ~p = ∂L/∂~v = m~v +
[(
~B × ~d

)
+ ~∇

(
~d · ~A

)]
, the

phase shift corresponding to the charge-potential interaction is the HMW phase
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expressed in Eq. (3.7). The first term in the interaction term of the above La-

grangian leads to the HMW phase φHMW and the second term gives rise to the

Spavieri phase φS. Just the additional term in the HMW phase was the subject

of debate as it is not obvious to be identified other than being a component of the

electromagnetic momentum associated with the interaction of electric dipole with

the static magnetic field.[34]

In this work, we aim to provide a unified description that takes into ac-

count dipole-field interaction and the currents associated with the dipole in motion

that couple with the magnetic vector potential and obtain the same Lagrangian

as due to Spavieri. Instead of a point charge dipole, as viewed by Spavieri,[6] we

consider an electric dipole ~d at ~r(t) as a charge dispersion with an effective charge

density given by ρ(~r′) = −
(
~d· ~∇~r′

)
δ(~r′−~r), which when moves with velocity ~v = d~r

dt

gives rise to polarization current ~JP (~r′) = −~d
(
~v · ~∇~r′

)
δ(~r′ − ~r).[35] A representa-

tive sketch of charge density distribution in a physical dipole is shown in Fig. 3.4.

Moreover, in the lab frame, a moving electric dipole is equivalent to a magnetic

dipole and the associated magnetization current is ~JM = −~∇~r′×
[(
~v× ~d

)
δ(~r′−~r)

]
.

Therefore, considering both the currents, the effective current density is [35]

~J = ~JM + ~JP ,

= −
[
~∇~r′ ×

[(
~v × ~d

)
δ(~r′ − ~r)

]
+ ~d
(
~v · ~∇~r′

)
δ(~r′ − ~r)

]
,

= −[δ(~r′ − ~r)[~∇~r′ × (~v × ~d)]− (~v × ~d)× ~∇δ(~r′ − ~r) + ~d(~v · ~∇~r′)δ(~r′ − ~r)],

= −~v
(
~d · ~∇~r′

)
δ(~r′ − ~r). (3.13)
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Figure 3.4: Representation of charge density distribution in a physical dipole.

The vector identity for curl, as well as the property of delta function, are used

in simplifying the above expression for the total current density, ~J . It should

be noted that the coupling of current ~JM with vector potential ~A results in the

dipole-field interaction, which can be viewed either as ~d · ~E ′ in the dipole’s rest

frame, with Lorentz transformed electric field ~E ′ = ~v× ~B, or as ~m′ · ~B interaction

in the lab frame, where ~m′ is the Lorentz transformed magnetic moment given by
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~m′ = ~d× ~v . This can be explicitly shown as

∫
~JM(~r′) · ~A(~r′)d3~r′,

= −
∫
~∇~r′ ×

[(
~v × ~d

)
δ(~r′ − ~r)

]
· ~A(~r′)d3~r′,

= −
∫ (

~v × ~d
)
δ(~r′ − ~r) ·

[
~∇~r′ × ~A(~r′)

]
d3~r′,

= −
∫ (

~v × ~d
)
· ~B(~r′)δ(~r′ − ~r)d3~r′,

=
(
~d× ~v) · ~B(~r),

= ~m′ · ~B. (3.14)

Once again the vector identity for curl, as well as the property of delta function,

are used in obtaining the above result. Therefore, the Lagrangian of the moving

electric dipole with an effective ~J · ~A interaction is

L =
1

2
mv2 +

∫
~J(~r′) · ~A(~r′)d3~r′,

=
1

2
mv2 −

∫ [
~v
(
~d · ~∇~r′

)
δ(~r′ − ~r)

]
· ~A(~r′)d3~r′,

=
1

2
mv2 −

∫
~d · ~∇~r′δ(~r′ − ~r)

(
~v · ~A(~r′)

)
d3~r′,

=
1

2
mv2 + ~d · ~∇

(
~v · ~A

)
,

=
1

2
mv2 + ~v ·

(
~d · ~∇

)
~A,

=
1

2
mv2 + ~v ·

[(
~B × ~d

)
+ ~∇

(
~d · ~A

)]
. (3.15)

This is the Lagrangian derived in Refs. [6, 7] with the interaction term leading to

the phase shift given in Eq. (3.7). The ingenuity of the present consideration lies
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in the fact that the term ~∇
(
~d · ~A

)
is now identified as electromagnetic momentum

associated with the interaction of polarization current ~JP with the vector potential

~A giving rise to the Spavieri phase φS, whereas the electromagnetic momentum(
~B × ~d

)
due to dipole-field interaction leads to the HMW phase φHMW . One of

the most important aspects of the preceding analysis is that the ~J · ~A interaction

accounts for effects associated with both ~B and ~A, with the latter being particu-

larly important in the AB-like effect when ~B is zero. We now demonstrate that

the net force and torque on the moving electric dipole in the HMW setup are zero,

and thus the HMW phase acquired by the electric dipole is purely topological in

nature.

3.5 Force and Torque on a Moving Electric Dipole

The classical Lorentz forceexperienced by an electric dipole ~d moving with velocity

~v in the static magnetic field ~B can be determined from the associated current

density ~J as [36]

~F =

∫
~J(~r′)× ~B(~r′)d3~r′,

= −
∫ [

~v
(
~d · ~∇~r′

)
δ(~r′ − ~r)

]
× ~B(~r′)d3~r′,

= −
∫ (

~d · ~∇~r′
)
δ(~r′ − ~r)

(
~v × ~B(~r′)

)
d3~r′,

=
(
~d · ~∇

)(
~v × ~B

)
,

=
(
~d · ~∇

)
~E ′. (3.16)
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where ~E ′ = ~v × ~B is the Lorentz transformed electric field in the rest frame of

dipole. Instead, one might be tempted to use ~E ′ =
(
~v× ~B

)
+
(
~v · ~∇

)
~A to represent

the effective electric field in Eq. (3.16), however, the second term of the resultant

expression can be expressed in the form ~v ×
[
~∇ × ~∇

(
~d · ~A

)]
, which is zero. The

foregoing expression resulting from the second term can be realized using a vector

identity, viz., ~C ×
(
~∇× ~D

)
= ~∇

(
~C · ~D

)
− ~D ×

(
~∇× ~C

)
−
(
~C · ~∇

)
~D −

(
~D · ~∇

)
~C.

For, ~C = ~v and ~D = ~∇
(
~d · ~A

)
, this identity reduces to

(
~d · ~∇

)(
~v · ~∇

)
~A, while care

should be taken in maintaining the correct order of operations involving ~∇ in the

resulting terms. We now write the force in the form obtained from the Lagrange’s

equation of motion, viz.,

d

dt

(
∂L

∂t

)
= ~∇L. (3.17)

For the Lagrangian expressed in Eq. (3.15), and making use of the convective

derivative,i.e., d
dt

= ∂
∂t

+ (~v · ~∇), the Lagrange’s equation of motion leads to force

~F = ~v ×
[
~∇×

(
~B × ~d

)]
, (3.18)

= ~v ×
(
~d · ~∇

)
~B. (3.19)

We note that Eq. (3.16) reduces to Eq. (3.19) for a constant ~v and ~d. It is

clear from Eq. (3.19) that a uniform field does not exert force on the dipole. In

the HMW setup, the magnetic field does not vary in the dipole direction, i.e.,(
~d · ~∇

)
~B = 0, and thus the dipole experiences no force.
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For a permanent electric dipole in the effective electric field ~E ′, the clas-

sical torque on the dipole is

~τ = ~d× ~E ′ = ~d×
(
~v × ~B

)
. (3.20)

Thus, so long as the dipole orients perpendicular to both ~v and ~B, the torque is

zero. This configuration of the triad (~v, ~d, ~B) is important in the HMW setup.

However, in the case of induced dipole due to externally applied electric field ~E,

the effective field ~E ′ = ~E+
(
~v× ~B

)
, orients the dipole ~d along its direction, and the

torque is always zero. Therefore, the phase acquired by the electric dipole in the

HMW setup is purely topological in nature. It should be noted that the electric

dipole should not be subjected to the classical force or torque while observing the

HMW phase.

We here summarize the conditions for the configurations of the triad

(~v, ~d, ~B) that make both force and torque zero in the HMW setup. A careful look

at the above Eqs. (3.18)-(3.20) reveals that for a finite phase accumulation with

a zero force and torque, the configuration in the HMW setup should be such that

for

(1) a permanent dipole in a radial magnetic field, the dipole must be oriented in

a direction perpendicular to both ~B and ~v, i.e., ~d⊥
(
~B,~v

)
, while for,

(2) an induced dipole, the magnetic field must be oriented in a direction perpen-

dicular to both ~d and ~v, i.e., ~B⊥
(
~d,~v
)
.

It should be noted that any geometrical restriction on the diads
(
~B,~v

)
and

(
~d,~v
)
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would prevent the HMW phase from being path independent. We evaluate these

conditions in various configurations in the following section, and we propose a

realistic radial field arrangement for observing the original HMW phase with a

magnetic field alone.

3.6 HMW Phase in Various Field Configurations

Several experimental setups with various field configurations have been presented

in the past for observing the HMW phase.[5, 13, 18, 19] However, Wilkens’ con-

figuration is still important for the following two reasons.[5]

(1) First, the magnetic field produced by the pierced magnetic sheet at the hole

mimics the radial field produced by a line of magnetic charge, and

(2) Second, there is no electric field in the setup, which would otherwise cause

stray effects linked with the Stark effect.

As shown in the preceding section that for an electric dipole, ~d = dẑ⊥
(
~B,~v

)
,

moving in the xy plane around a line of magnetic charge with density λ per unit

length that produces a radial magnetic field given by

~B =
Bo

r
r̂; Bo =

µo
2π
λ, (3.21)

the classical force and torque on the dipole are zero, which is essential for the

topological nature of the HMW phase. We note in passing that in cold atom

experiments, it is feasible to recreate a radial magnetic field caused by a line of
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magnetic charge.[37] The vector potential corresponding to the above magnetic

field can be written as

~A =
µo
2π
λθẑ, (3.22)

where θ, an azimuthal angle. It must be noted that θ is a multi-valued function

that experiences a finite discontinuity of magnitude 2π as we go around the origin.

However, for such a vector potential the gradient ~∇
(
~d · ~A

)
reduced to −

(
~B × ~d

)
,

and thus the HMW phase expressed in Eq. (3.7) vanishes as discussed in Ref.

[6]. At this point, it must be made clear that the multi-valued vector potential

expressed in Eq. (3.22) is only a mathematical construction that makes the second

term in Eq. (3.7), non zero. As argued, no vector potential with ~∇ × ~A = Bo
r
r̂

actually exists making ~∇· ~B = 0 globally for Maxwell’s equations to hold true.[22]

Several practical schemes were proposed for the observation of the HMW

phase, however, both electric and magnetic fields are employed for the purpose. In

a setup proposed by WHW,[18] the induced electric dipole ~d encircles a charged

wire in the xy plane. The charged wire is oriented along the z direction that pro-

duces radial electric field in the xy plane, while a uniform magnetic field ( ~B⊥
(
~d,~v
)
)

is applied parallel to the wire along z direction. Due to the radial nature of the

electric field, the orientation of the induced dipole changes along the path of the

dipole, however, the requirement of the radial magnetic field for the observation

of the HMW phase is eliminated in the setup. Although such field configurations
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in a setup appear simple, it is only in 2012, Lepoutre et al.[10–12] experimen-

tally observed the HMW phase. In their setup, the electric field configuration

due to the central plate of the capacitor, when shrink to a wire, reduces to that

of the WHW configuration. However, the problem in the experimental setup is

the extraction of the HMW component from the total phase shift as the electric

field-induced effects, e.g., Stark and the AC effects may contribute to the total

phase shift. Also, since a uniform magnetic field is employed, the observed HMW

phase shift is aesthetically different from the original HMW phase that was pro-

posed to observe in a radial magnetic field alone. In yet another configuration due

to Lee,[13] a uniform magnetic field is shown to induce the HMW phase. For a

uniform field ~B = Bx̂, the HMW phase acquired by a permanent electric dipole,

~d = dẑ oriented in a direction perpendicular to both ~B and ~v can be considered

as the electromagnetic dual of the phase studied by Casella involving a magnetic

dipole in a uniform electric field.[3] It is to be noticed that crossed-electric and

magnetic fields are commonly used to avoid the need for a radial magnetic field.

For instance, in a recent experiment by Kumiya et al.,[38] uniform electric and

magnetic fields are used in Ca atom interferometer leading to the HMW phase of

3.0± 2.1 mrad.

In this work, we emphasise the importance of an inverse radial nature

of the magnetic field for observing the original HMW phase. The required radial

magnetic field for the purpose can be generated in a variety of ways. For instance,
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Figure 3.5: Field configuration in (a) Wilkens’ magnetic sheet,[5] (b) Curved
pole pieces (CPP),[40] (c) Anti-Helmholtz coil (AHC),[39] and (d) Straight wire

(SW)

the radial magnetic field that exists in the air gap between the magnetised cylindri-

cal curved pole pieces (CPP) and a soft iron cylindrical core, is essentially radial.

Starting with Wilkens’ field configuration, various other field configurations are

presented in Fig. 3.5. A practical setup for the observation of the HMW phase

employing CPP in the interferometric paths is discussed in the next section. Also,

one may exploit the Meisner effect in a superconducting material to produce a

planar radial magnetic field in a narrow gap between a superconductor disc and

one end of a long current-carrying solenoid. The diverging magnetic flux out of
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the solenoid’s end does not penetrate the superconductor disc cooled to a tem-

perature below the critical temperature of the material, and thus the field lines

spread out in a radial pattern parallel to the narrow gap. As such, a planar radial

magnetic field ~B ∝ rr̂ can be obtained in an anti-Helmholtz coil (AHC) used in

the study of 2D ferrofluid patterns.[39] However, in such a radial field with dipole

~d = dẑ⊥
(
~B,~v

)
, and motion confined in the xy plane,

(
~B × ~d

)
∝ rθ̂. This results

in non-zero force, while the torque vanishes. The phase accumulated by the dipole

contains a component due to non-zero force, hence such a magnetic field does not

belong to our consideration. Nevertheless, a slight modification in the AHC setup

would yield a radial field with ~B ∝ 1
r
r̂. For instance, a ferromagnetic rod may be

coaxially placed in the AHC setup generating a field configuration similar to that

proposed by Tkachuk.[19] It must be mentioned here that even if the field has 1
r

dependence but is not radial, as is the case in a long current-carrying straight wire

(SW) oriented along z-axis, for which ~B ∝ 1
r
θ̂ and thus,

(
~B× ~d

)
∝ 1

r
r̂. The HMW

phase is zero for such a field configuration. The varieties of field configurations

discussed above are summarized in Table 3.1.

A moment’s reflection shows that the force is zero in all configurations

except that in the AHC setup, while torque is zero in all cases. Finally, we stress

that the inverse radial dependence of the magnetic field is crucial for observing

the original HMW phase with the magnetic field alone.
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Table 3.1: Various field configurations for the (a) AC and (b) HMW phases.
For the AC phase, ~m⊥

(
~E,~v

)
, while for the HMW phase, ~d⊥

(
~B,~v

)
, except in

the WHW configuration in which case ~B⊥
(
~d,~v
)
.

Configuration ~E ~B φ Comment Ref.

(a) AC 1
r
r̂ 0 6= 0 Radial ~E [2]

Casella Uniform 0 6= 0 Equiv. to AC [3]
(b) Wilkens 0 1

r
r̂ 6= 0 Dual of AC [5]

WHW 1
r
r̂ Uniform 6= 0 ~E radial, not ~B [18]

Lee 0 Uniform 6= 0 Dual of Casella [13]

CPP 0 1
r
r̂ 6= 0 Radial ~B [40]

AHC 0 rr̂ 6= 0 Non-zero force [39]

SW 0 1
r
θ̂ 0 Non radial ~B

3.7 Practical Setup for the Realization of the

Original HMW Effect

In this section, we present a feasible setup that provides the radial magnetic field

suitable for the observation of the HMW phase of a permanent electric dipole. This

field configuration is in the spirit of the original HMW phase with a magnetic

field alone. As shown in Fig. 3.6, the magnetic field in a space between the

magnetised cylindrical curved pole pieces (CPP) and a soft iron cylindrical core

at the center, is essentially a cylindrical symmetric radial field, i.e., ~B ∝ 1
~r
r̂.[40]

Such a simple arrangement is common in the electric motors and moving coil

galvanometers but has never been proposed before when a radial magnetic field

with inverse radial dependency is required to realise the HMW phase in a Wilkens-

type interferometric setup. For a dipole oriented along the z-axis in the cylindrical

symmetric radial magnetic field,
(
~B × ~d

)
∝ 1

r
θ̂, the force on the dipole is zero,
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Figure 3.6: Top view of interferometric paths (I, II) of a permanent electric
dipole through a radial magnetic field, ~B ∝ 1

r r̂ in a space between the cylindrical
curved pole pieces and a soft iron core at the center. Path I encloses both
converging and diverging fields while path II encloses either of the fields. The
permanent electric dipole ~d = dẑ is oriented in a direction perpendicular to the

interferometric plane with a source (S) and detector (D) of the dipoles.

while its motion in the xy plane results in zero torque. As shown in the figure, two

interferometric paths I and II are considered. The path I has two interferometric

arms through the radial magnetic field, whereas path II only has one. It is evident

from the figure that there is no HMW phase shift for the path I due to passage

through both convergent and divergent radial fields. However, since path II has

only one interferometric arm through either a convergent or divergent field, the

dipole acquires a finite HMW phase. It must be mentioned here that several

aspects of the proposed setup have a direct impact on the observability of the

HMW phase. This include, minimization of flux leakage, appropriate spacing

between the pole pieces and the iron core, number of turns and current through
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the windings. Optimal selections of these would increase the prospects of phase

measurement. Another parameter of paramount importance in the observability of

the HMW phase is the strength of the electric dipole moment. A suitable choice for

a permanent electric dipole would be the alkali halide molecules (MX; M=K,Rb,Cs

and X=Cl,Br,I) that have dipole moments over 10 Debye.[41] Also, by applying

a homogeneous electric field axially, one can enhance the dipole moment without

changing its orientation, however, the resulting configuration will be identical to

the WHW configuration [18] with a role reversal of the electric and magnetic fields.

A subtle choice is to make use of excitons that have permanent dipole moments

over 100 Debye.[42] A detailed study of the HMW effect involving excitons would

offer entirely new perspectives on excitonic quantum interference in molecular

and nanoscale excitonic devices.[43, 44] This is the subject of interest in the next

chapter.

3.8 Summary and Concluding Remarks

In conclusion, the HMW phase of a moving electric dipole in a static magnetic

field is investigated. By explicitly considering the interaction between the cur-

rents associated with the moving dipole and the vector potential corresponding

to the magnetic field, we deduced the Lagrangian of the moving dipole leading to

the HMW phase. The conditions for observing the HMW phase in various field

configurations are explored, with a focus on the verification of the original HMW

phase that was proposed to observe in a radial magnetic field alone. A simple
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experimental setup, consisting of magnetized cylindrical curved pole-pieces with

a ferromagnetic core at the center that provides a radial magnetic field with an

inverse radial dependence is proposed for the observation of the original HMW

phase. The study of magnetic field effects is important when dealing with the

coherence of neutral particles endowed with electric dipole moment in an open

quantum ring. This opens up whole new avenues of dipole current control in the

possible HMW effect-based devices.
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Chapter4

Magnetic Field-Based Exciton Cur-

rent Control In The Stacked PAM

Junctions†

Abstract

A practical realization of exciton transport control exploiting the He-McKellar-

Wilkens (HMW) phase in stacked phenylacetylene macrocycle (PAM) junctions is

examined. Numerical calculations suggest the sensitivity of the exciton transport

to the applied magnetic field in a model 1D continuum ring system and a stacked

PAM molecular ring structure. Despite the fact that a number of parameters

have a direct impact on the exciton transport through a ring junction, a prop-

erly designed setup would significantly increase the prospect of exciton transport

controlled by the applied magnetic field.

†Part of this chapter is based on a research article:
Yam P. Rai and Dhurba Rai, “On the He–McKellar–Wilkens phase of an electric dipole”, Ann.
Phys. 383, 196 (2017).
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4.1 Background

The concept of molecular ring junction devices, which may have substantial func-

tionality given a wide diversity of molecular ring configurations,[1–3] has emerged

in response to theoretical and experimental interest in quantum interference-based

electronic devices.[4–7] The possible magnetic field control of electron transport

through nano-size rings under a weak coupling condition has been investigated

theoretically,[8–10] however, no experimental confirmations are available to date.

The concept was then evolved to include molecular-scale rings, and it was inves-

tigated under various circumstances for potential control of electron conduction

through such rings by an externally applied magnetic field. The most important

prerequisite for the goal is that the molecules must have degenerate energy levels

in order for them to be separated by the asymemtric geometry connection of the

contact leads (or electrodes) to the ring and the energy gaps between the levels

that are altered by the magnetic field.[11, 12]

Our goal in this Chapter is the investigation of potential magnetic field

control of exciton current exploiting the He-McKellar-Wilkens (HMW) phase ac-

quired by a moving exciton by virtue of its electric dipole. The observation of

the HMW phase itself necessitates a significant dipole moment of the neutral

particle, among other things, as was discussed in the introduction chapter. The

search for a suitable and stable molecule that may be used to exploit the HMW

phase and possibly make use of the HMW phase for device applications is still
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ongoing because the molecular electric dipole moment greatly exceeds that of the

neutral particles.[13] Alternately, since excitons are neutral particles with signif-

icant dipole moments as already discussed in the introduction chapter, we may

consider employing them instead. Along this line, the possibility of using bilayer

exciton condensates to demonstrate the HMW phase has been reported in the

literature.[14] The choice of using excitions for large dipole moments is particu-

larly appealing since the continuous generation of excitons using a continuous-wave

(CW) laser is possible and the suitable materials for the purpose are a wide class

of bilayer heterostructures of transition metal dichalcogenides (TMDs)that have

a wide range of energy gap (∼ 1.3 to 2.8 eV) and can be suitably modulated by

scaling down their thickness from multilayer to monolayer.[15, 16] The excitons

so generated are then diffused into the volume of the material and eventually lost

due to electron-hole recombination, thereby releasing photons that can be accessed

through photoluminescence (PL) spectroscopy.[17] A sketch of the theme under-

taken in this work is shown in Fig. 4.1. Quite intrestingly the whole journey of

excitons from its creation to annihilation can be tracked using the state-of-the-art

spectroscopic techniques currently available.[18, 19] In particular, the indirect ex-

citons induced in the bilayer heterostructure materials by photo excitation have

the requisite properties, such as a large dipole moment, long diffusion length, and

long lifetime. Additionally, in such materials, the exciton production is efficient

due to the large photon absorption power of the materials associated with the

characteristic direct energy gap in most cases, which can be suitably tuned by

changing the stacking order. The use of an electric field through a gate electrode
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Figure 4.1: Optical excitation-driven diffusion of excitons with magnetic field
control of PL emission.

is an efficient and well-established method of controlling exciton transport.[20, 21]

Concerning our work, we focus on the magnetic field aspects of exciton

current control. The influence in the energy spectrum of an exciton in a meso-

scopic quantum ring threaded by a magnetic flux has been thoroughly studied in

the last decades in the context of the Aharonov-Bohm (AB) effect.[22–28] The

exciton energy spectrum in the magnetic field bears a remarkable resemblance

with the energy spectrum of a charged particle in the ring.[29] This motivates us

to consider the possible magnetic field-based control of exciton transport across

a ring structure junction along the lines of magnetic field influence on the elec-

tron transport across ring junctions as discussed in Refs.[8–12]. However, it must

be mentioned here that the magnetic field influence on the energy spectra of an

electric dipole or excitons confined in the quantum rings is the manifestation of

the AB effect of spatially separated constituent ±q charges.[22–28] In contrast,

concerning our work, the feasibility of magnetic field control of exciton transport
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across ring junction lies on the modulation of the HMW phase pick-up by the

interfering electric dipoles in the ring,[30] though the HMW phase can be shown

to be obtained from the AB phases of the constituent charged particles,[14, 31]

however, they are fundamentally different as discussed in Chapter 2. We here

explore this in a molecular ring junction.

Numerous models have been proposed to study various aspects of exciton

transport.[14, 32–38] For instance, the exciton currents in photosynthetic systems

have been studied with the two-site and Fenna-Matthews-Olson (FMO) models,

wherein currents are calculated using the quantum master equation in Lindblad

form.[38] Of interest to us is how to make them move in a molecular system

[33, 35, 38] or bilayer structures [14, 34, 36] as they are electrically neutral. We here

consider a diffusion model for exciton transport across a molecular ring bridging

the bilayer heterostructure TMD contact leads. Excitons are generated by a CW

laser in the input contact that acts as the exciton source reservoir. The excitons

then diffuse through the bridging ring molecule, which we considered a stacked

phenylacetylene macrocycle (PAM), to reach the output TMD lead (sink reservoir)

where they are annihilated and PL emission takes place. The diffusion of excitons

from source to sink reservoirs set exciton current through the bridging PAM ring.

The details of the proposed setup are discussed later in the section concerned.

Considering the diffusion length of inter-layer excitons (LD > 1µm, [39])

and the size of the PAM ring (diameter ∼ 1 nm, [40, 41]), the proposed setup has

an incredibly small gap between the TMD contact leads, and thus the transport
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of excitons across the PAM can be considered to take place ballistically without

energy loss. The Landauer formulation accurately describes the electron and heat

transport through the molecular junctions when such coherent transport is the pri-

mary mechanism.[42–44] In a precise analogy to the electron transport, Xiong et

al. [45] have studied the excitation energy transfer (EET) and the exciton current

in the photosynthetic systems within the Landauer formalism with tight-binding

Hamiltonians describing the exciton reservoirs and a pigment network for exciton

transport. The exciton currents are evaluated by summing the exciton trans-

mission probabilities over all the excitonic transfer channels within the relevant

energy window. We here consider a tight-binding model Hamiltonian describing

the stacked PAM ring molecule bridging the TMD contact leads. It is possible

to perform a perspective study of the PL caused by the excitons’ diffusion into

the sink reservoir and the influence the applied magnetic field in the PAM ring

have on the PL spectrum, similar to the study of electric field influence on the PL

spectrum of excitons trapped in a quantum ring.[46]

4.2 Scope of the Work

The 2D TMDs exhibit remarkable electrical and optical properties.[47] Most im-

portantly, the energy band gap can be altered from indirect to direct when the bulk

material or multilayers are scaled down to monolayers.[48] However, the bilayer

heterostructure TMDs are found to have a direct band gap.[48] The long-lived na-

ture of the interlayer excitons generated in the bilayer heterostructure TMDs has
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a diffusing ability of over a hundred nanometers distance.[39] The tunable band

gap in such materials is accompanied by strong PL and large binding energy and

dipole moment of the excitons, making them a promising candidate for a variety

of optoelectronics and excitonic devices.[49]

In this work, we model a bilayer heterostructure TMD as an input con-

tact lead, injecting indirect excitons excitons produced by a CW laser into the

stacked PAM ring molecule and dissipating the excitons in the output bilayer het-

erostructure TMD on the other end. A radial magnetic field is applied in the plane

of the PAM ring. Discussion on the various practical setups feasible for producing

the required radial magnetic field was covered in Chapter 3. The applied mag-

netic field modulates the HMW phase acquired by the moving excitons, thereby

affecting their interference at the output lead. However, in order for the otherwise

degenerate energy levels of the ring molecule to be tuned by an applied magnetic

field, the contact leads to the bridging molecule must be connected in a geometri-

cally asymmetric configuration.[11, 12] The control over exciton transport through

the ring junction is made possible by the magnetic field-tuning of the transmis-

sion spectrum that essentially changes the energy gap between the already split

energy levels associated with the geometrically asymmetric connection of the con-

tact leads to the ring. This, however, is not possible for a symmetrical connection

of the contact leads to the ring. The underlying consideration has its root in the

remarkable resemblance of the magnetic field effect on the energy spectrum of an
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exciton confined in a ring with that of a charged particle in the ring.[29, 50] Look-

ing from the perspectives of photon absorption for exciton generation in the input

lead to the PL emission in the output lead that is tuned by the applied magnetic

field in the ring, the underlying mechanism may be viewed as manipulating light

with a magnetic field.[51] Such a setup may lead to the development of efficient

exciton-based optoelectronic devices for optical communications.

The structure of the chapter is as follows. Section 4.3 presents the con-

ceptual framework outlining the model for exciton formation in the input lead,

exciton transport across the stacked PAM ring molecule, and exciton diffusion

into the output lead with a possibility for the PL spectroscopic studies. In Section

4.4, we provide the numerical findings for a model 1D continuum ring and PAM

ring junction, where the applied magnetic field effectively controls the exciton

transport across the ring. Section 4.5 provides an overview of the work and its

implications for further research are covered.

4.3 Theoretical Framework

We now present the theoretical models employed in our study of exciton transport

and control in the molecular ring junction. We delve into the mechanisms of

exciton diffusion from input to output leads, their transport across the stacked

PAM ring molecule and a possible PL study, invariably under the steady-state
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condition. Separating the model into three steps, as shown below, makes the

entire process easier to comprehend.

4.3.1 Exciton generation and diffusion

Excitons are generated by a CW laser excitation in the input contact lead made

up of a bilayer heterostructure MoSe2-WSe2. As long as the laser pumping is con-

tinuous, the interlayer excitons are generated continuously in the input lead. The

bilayer MoSe2-WSe2 is a 2D material where WSe2 monolayer is stacked on MoSe2

monolayer with interlayer separation ∼ 0.40 − 0.70 Å depending on the stacking

configurations (AA, AA′ etc.) [52–55] and the interaction between the layers is a

weak van der Waals interaction. Thus, it is possible to easily produce such bilayers

by various methods such as artificial stacking, mechanical exfoliation, tear-and-

stack and mechanical transfer.[56, 57] With the cutting-edge technologies that

are currently accessible, it is possible to fabricate a monolayer TMD-PAM-TMD

junction and stacked it on top of another monolayer TMD-PAM-TMD junction

to produce the bilayer TMD-stacked PAM junction. The average interplanar sep-

aration in the stacked PAM is ∼ 0.4 nm.[41] The energy band gap of a bilayer

MoSe2-WSe2 is ∼1.3 eV [58] while the individual MoSe2 and WSe2 monolayers

have a band gap in the range ∼ 1.4 − 1.6 eV.[59] Other heterostructures like

MoS2-WS2, MoSe2-WS2, MoS2-WSe2, etc can be considered for the purpose.

The peculiar band gaps of these materials are particularly appealing

for extraordinarily strong light-matter interactions as desired for applications in

119



Chapter 4 Sec.4.3.1

Figure 4.2: Laser excitation of the input contact lead and PL at the output
lead with a possible magnetic field-based control of exciton transport through
a molecular ring exploiting the modulation of the HMW phase acquired by
the excitons. The excitons are injected into the ring at a tunneling rate Γ/~
and a radial magnetic field ~B is applied in the molecular plane. L < LD
(L = dL + LM + dR) is the effective size of the setup and LM is the dimeter of

the molecular ring.

the optoelectronics devices operating in the visible to near-infrared wavelength

regime.[60–62] Thus, upon photo-excitation, electrons and holes are generated,

however, the majority of the electrons reside in the MoSe2 layer and holes in the

WSe2 layer. As a result, the interlayer excitons are generated in the bilayer input

lead. However, due to their longer lifetime τ > 1 ns [63, 64] and high density

in the laser focussed region, the exciton cloud extends well beyond the excitation

region making them diffuse over several hundred nanometers. With the separa-

tion of electrons and holes into their respective quantum wells in the interlayers,

indirect excitons form electric dipoles with dipole moment in the range ∼ 20− 35

Debye that is aligned perpendicular to the bilayer’s plane. It is the gradient in

dipole-dipole interaction potential that causes exciton diffusion from the region of

high density to low.

We consider a laser light incident on the edge surface of the input bilayer

TMD lead at x = 0 as depicted in Fig. 4.2. The input lead occupies the space
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x > 0 and extends to x = dL, such that the length dL is large compared to the

penetration depth (1/α) of the light, where α is the absorption coefficient of the

bilayer TMD. Since the excitons are continuosly generated by photo excitation,

the rate equation for exciton diffusion in 1D can be modeled as [65–67]

d

dt
n(x, t) = D

d2

dx2
n(x, t)− 1

τ
n(x, t)−RAn

2(x, t) +G(x, t), (4.1)

where n is the exciton density, D is the diffusion coefficient associated with exciton

diffusion in the TMD material, τ is exciton lifetime, RA is the Auger recombination

coefficient, G is the light-induced exciton generation rate per unit length around

x in the x-direction. Accordingly, the first term describes exciton density diffu-

sion, the second term denotes recombination rate, while the third term describes

Auger recombination (non-radiative) process. Assuming that each photon absorp-

tion causes an exciton generation and no exciton-exciton annihilation through the

Auger recombination process, the exciton generation at any point x in the material

can be related to the incident photon rate J0 as G(x, t) = G0e
−αx = J0αe

−αx,[67]

where G0 is the generation rate at per unit length at x = 0 and α is the photon

absorption coefficient of the material. Given the laser power (P in µW) and wave-

length (λ in nm), J0 (photons/second) can be determined as J0 = 5×109×P ×λ.

Since our concern in the present work is the steady-state transport, the exciton

diffusion equation reduces to

d2

dx2
n(x)− 1

Dτ
n(x) = −J0α

D
e−αx. (4.2)
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Solving for exciton density, we get

n(x) = C1e
x√
Dτ + C2e

− x√
Dτ − J0ατe

−αx

(Dτα2 − 1)
. (4.3)

To determine the constants C1 and C2, we make use of the boundary conditions,

viz., at a large distance from the excitation region, the density of the excitons is

zero, i.e., the exciton density is negligibly small, i.e., n(x)
∣∣∣
x=+∞

= 0, for which Eq.

4.3 requires C1 = 0. Also, due to continuous generation, the exciton density has

diminishing gradient at x = 0, i.e., dn(x)
dx

∣∣∣
x=0

= 0. This condition may be identified

as a non-quenching surface at x = 0. Thus, Eq. 4.3 leads to

C2 =

√
DτJ0α

2τ

(Dτα2 − 1)
, (4.4)

Therefore, the exciton density distribution is

n(x) =
J0ατ

(1−Dτα2)

[
e−αx − α

√
Dτe

− x√
Dτ

]
. (4.5)

For no diffusion (D = 0), this equation essentially gives the exciton density profile

along the excitation path with exponentially diminishing light intensity. As dis-

cussed in the preceding section, we consider ballistic diffusion across the PAM ring

molecule for LM << LD, where LM denotes the size of the PAM ring molecule

bridging the input-output leads. The exciton diffusion length LD is related to the

diffusion coefficient as LD =
√
Dτ .
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Transport calculations within the Landauer formulation require elec-

tronic coupling strength between the continuum energy states in the contact leads

and the discrete energy levels of the bridging molecule, which can be interpreted in

terms of the tunneling rate (Γ/~) of the particles from the input lead to molecule

and then to the output lead. In the electron transport problems in molecular junc-

tions, one generally considers Γ on the order of a few tens to hundreds of meV,[68]

while the detailed calculation would require the details of overlap integrals between

the atomic orbitals of the lead and the molecular orbitals at the interface and also

the density of continuum states in the lead. The present consideration is the op-

tical excitation-driven diffusion of the excitons. For diffusion governed by Fick’s

law, one may consider a phenomenological model for a heuristic determination of

the rate of exciton diffusion into the PAM ring as

kD = −Ddn(x)

dx

∣∣∣
x=dL

, (4.6)

=
J0Dτα

2

(1−Dτα2)

[
e−αdL − e−

dL√
Dτ

]
. (4.7)

It is tempting to consider, for calculation purposes, a suitably scaled kD playing the

same role as Γ (or the electron transfer rate k) does in the typical electron transport

problem, however, precisely identifying it as the coupling of continuum states of the

bilayer TMD leads to the discrete energy levels of the stacked PAM ring would be

an overstatement and overinterpretation. For low Γ electron conduction, Γ scales

linearly with k,[69] however, we are not aware of any work relating kD with Γ. This

could be the basis of our future endeavour. Also, our analysis and consideration
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can be thought of as operating in the wide-band approximation, where the rate at

which each exciton enters the ring is independent of energy.

4.3.2 Exciton transport through stacked PAM ring

Once the excitons are mounted in the molecular ring, their conduction through

various transmission channels in the molecular ring is largely decided by the quan-

tum interference effect and coupling strength to the exit lead R. For the reason

stated in the preceding sections, we consider geometrically asymmetric connec-

tion of the contact leads to the ring and consider symmetric coupling strengths,

ΓL = ΓR = Γ. Limiting ourselves to the ballistic and elastic transport of excitons

in the setup, the Landauer formalism provides a reliable mechanism for exciton

transport, just as it does for electron and heat transport across the molecular

junctions.[44] The central quantity in the Landauer formalism is the calculation

of the transmission probability function T (E). Before delving into the technical

details of its calculation, we first discuss the tight-binding models adopted for our

purpose. Various tight-binding models for excitons have been proposed.[70, 71]

We begin with the Hamiltonian of the setup as

Ĥ = ĤM + ĤK + ĤKM , (4.8)

where the different sub-Hamiltonians characterise the different regions of the setup.

The Hamiltonian ĤM accounts for excitons in the ring molecule M , ĤK for the
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contact leads (K = L,R) that act as exciton reservoirs, while ĤKM represents the

coupling between the ring molecule and the contact leads. In second quantization

form

ĤM =
∑
i∈M

εid̂
†
i d̂i −

∑
〈ij〉∈M

(
tij d̂

†
i d̂j + h.c.

)
, (4.9)

where d̂i and d̂†i destroys and creates an exciton at site i in the molecule, respec-

tively. As is typical in the tight-binding theory, εi denotes the on-site energy and

tij is the hopping integral between the nearest-neighbor sites (i, j) in the molecule.

Likewise,

ĤK =
∑
i∈K

εiĉ
†
i ĉi, K = L,R, (4.10)

where εi is the on-site energy of excitons in the source and sink reservoirs, and

ĉ†i and ĉi are the creation and annihilation operators. The last term in the total

Hamiltonian is

ĤKM =
∑

i∈M,j∈K

(
vij d̂

†
i ĉj + h.c.

)
, (4.11)

where the coupling matrix elements vij describe the strength of interaction between

the continuum energy states in the contact leads and the excitonic states of the

molecule. This is related to the energy level broadening function ΓK,ij(E) =

2π
∑

k∈K v
∗
kivkjρ(E), where ρ(E) is the density of states in the contact leads. As

shown in Fig. 4.3, a radial magnetic field ~B ∼ r̂/r is applied in the molecular

plane of the ring. In analogy to electron transport problem,[11] magnetic field

enters in the calculation through the hopping integral tij which gets modified as
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Figure 4.3: Schematic representation of a stacked PAM junction setup.

[14, 30]

tij → tije
i 2π|e| (∆Φd)ij/Φ0 , (4.12)

where (∆Φd)ij =
∫ ~rj
~ri

( ~B × ~d) · ~dl and Φ0 = h/|e| is the flux quantum. The phase

∆φHMW = 2π
|e| (∆Φd)ij/Φ0 can be identified as the HMW phase acquired by the

dipole ~d while hopping from site i to j. A driven open system with a flow of

particles in and out constitutes a non-equilibrium system. In such a case, as widely

used in the electron and heat transport problems, we use the non-equilibrium

Green’s function (NEGF) method to assess the transmission probability function

T (E) under the steady-state condition. Within the NEGF method, T (E) can be

expressed in terms of the retarded (Gr = [E −HM − ΣL − ΣR]−1) and advanced

(Ga = [Gr]†) Green’s functions of the molecule through a relation [42, 43]

T (E) = Tr[ΓLGrΓRGa], (4.13)

where the trace is taken in the finite basis set of the molecule. In the above expres-

sion, ΓL and ΓR are the tunneling or coupling matrices that represent the coupling
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between the molecule with left and right contact leads, respectively. They are usu-

ally expressed in terms of the self-energies of the contact leads as, ΓK = i[ΣK−Σ†K ].

The self-energies come into play on account of the effect the bulk contact leads

have on the bridging molecule. As a consequence, the molecular energy levels

get broadened, thereby affecting the transport characteristics. With all relevant

expressions in place, the steady-state excitonic particle current I is obtained by

summing up transmission contribution from all possible energy channels in the

energy window (EMin, EMax), i.e., [42–44]

I =
1

h

∫
T (E)dE. (4.14)

This consideration is an exact analogue of the Landauer current for electron and

heat transport in the coherent elastic limit at 0 K temperature. The finite temper-

ature calculations, however, require the details of exciton’s occupation of energy

levels in the leads subject to Bose-Einstein statistics, which is not covered in the

present analysis.

4.3.3 Steady-state photoluminescence

The annihilation of excitons in the bilayer heterostructure TMD output contact

lead is accompanied by a characteristic PL associated with the radiative electron-

hole recombinations. The PL intensity is proportional to the number of excitons

in the output lead. To calculate this, we solve the diffusion equation under the

127



Chapter 4 Sec.4.3.3

steady-state condition, i.e.,

D
d2

dx2
n(x)− 1

τ
n(x) +G0R δ(x− x0) = 0, (4.15)

where G0R is the rate at which the excitons exit the ring at x = x0 molecular-lead

interface. This acts as a point source of generation of excitons in the output lead,

which are then freely diffused into the output lead. Solving for the exciton density

distribution, Eq. 4.15 yields

n(x) = C1e
x√
Dτ + C2e

− x√
Dτ +

√
DτG0R

2D
e
− 1√

Dτ
(x−x0)

. (4.16)

As before, the constants C1 and C2 are to be determined from the boundary

conditions pertinent to the physical setup. At a location far from the interface

in the output lead, exciton density is negligibly small i.e., n(x)
∣∣∣
x=+∞

= 0, for

which Eq. 4.16 requires C1 = 0. The boundary condition at the interface is

n(x)
∣∣∣
x=x0

= G0R/v = I/v, which is the ratio of exciton current I to the exciton

velocity v, with which the excitons exit the ring and enter the output lead. We

take a conservative estimate of velocity as v =
√

2|E|/M , where M is the exciton

mass. However, we consider v0 energy independent (wide-band approximation),

and evaluated as, half the value at either edge of the energy window (Emin, Emax)

for conduction channels, i.e., v0 = v(E = Emin/max)/2 for all excitons. Thus,

C2 =
(1

v
−
√
Dτ

2D

)
G0R e

1√
Dτ

x0 , (4.17)
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Therefore, the exciton density distribution in the output lead is

n(x) =
G0R

v
e
− 1√

Dτ
(x−x0)

. (4.18)

which is a typical density profile in a free diffusion process. PL originates from the

radiative recombination of excitons. Considering that all excitons have the same

recombination probability through radiative decay, the entire PL intensity from

the segment, x = x0 to x = dR, of the output lead can be obtained by integrating

the density profile as [67, 72–74]

IPL =

∫ dR

x0

n(x)dx, (4.19)

=
G0R

v

√
Dτ
(

1− e−
1√
Dτ

(dR−x0)
)
. (4.20)

where dR is the distance from the interface into the output lead over which the

exciton recombination takes place. In a steady-state situation, for a given magnetic

field value, the PL intensity is only the function of length segment dR of the output

lead over which radiative decay of excitons occurs.

4.4 Numerical Results and Discussion

To a very good approximation, an exciton can be considered a neutral particle

with a finite electric dipole moment ~d. We consider typical parameters for the

calculation of transmission probability function T (E) as indicated in the respective

129



Chapter 4 Sec.4.4.1

sections while temperature is considered zero in all calculations. Exciton transport

through 1D continuum ring subject to planar radial field ~B ∼ r̂/r is studied. We

consider each vertically positioned phenyl pair in the stacked PAM ring as a single

site in the tight-binding model considered in this work, thereby essentially reducing

the stacked PAM ring to a six-site hexamer ring. Thus, the result presented

here is simply intended for indicative purposes and in no way should be taken as

quantitative.

4.4.1 Exciton transport through 1D continuum ring

Considering the analogy to an electron confined in a 1D ring pierced by a magnetic

field ~B, the energy spectrum of an exciton confined in a 1D ring of radius R is

given by [29, 75]

E(m,B) =
~2

2MR2

(
m+

Φd

Φ0

)2
, (4.21)

where M is the mass of the exciton and m = 0,±1,±2, ... represents the angular

quantum number, while Φd = 1
|e|

∮
( ~B× ~d) · ~dl and Φ0 = h/|e| is the flux quantum.

As discussed in Chapter 3, the HMW phase of an electric dipole requires radial

magnetic field ~B ∼ r̂/r, and for the configuration where the dipole moment is

oriented in the direction perpendicular to both fields ~B and velocity ~v, i.e., for

~d⊥( ~B,~v), Φd = 2π
|e|dRB. The HMW phase acquired by the dipole in the ring is

φHMW = 2πΦd/Φ0. The variation of low-lying energy states (m = ±0, 1, 2) of an
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Figure 4.4: Low lying energy levels of an exciton confined in a 1D ring as
a function of applied magnetic field for d = 50 Debye and R = 10nm. The
energy levels to the left of the dotted vertical line are only indicative of how the
applied magnetic field narrows the already split otherwise degenerate levels due
to contacts at angular separation ϕ other than n π

m and (n+ 1
2) πm . The zero of

the magnetic field axis is shifted by 2.5 T to the left to show the energy level
split by contact leads before the field application.

exciton confined in a 1D quantum ring as a function of the applied magnetic field

is shown in Fig. 4.4 for d = 50 Debye and R = 10 nm. The transmission map

along the energy curves is only for indications of the typical evolution of trans-

mission probability and it should not by any means be considered quantitative.

It illustrates how the magnetic field narrows the already separated otherwise de-

generate energy levels, due to contact leads’ asymmetrical connection to the ring,

thereby increasing the transmission to its maximum (T ∼ 1) at the energy level

crossing or at the position of the minimum energy gap in the case of the avoided
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crossing as when such circumstances arise. For the perceptive and comprehensive

understanding of the events occurring at the energy levels, T (E) vs E plot pro-

vides a better illustration. This is demonstrated in the next section for a stacked

PAM ring junction. We may note in passing that an efficient modulation of the

transmission function occurs for field values below the value for which the trans-

mission function becomes maximum, T ∼ 1. Whereas as stressed earlier, this is

not possible in the case of symmetrically connected leads, because the symmetric

connection alone does not lift the degeneracy of the energy levels. The separation

of otherwise degenerate energy levels by the contact leads at zero fields is crucial,

which is possible only if the contact leads are connected asymmetrically.

From the perspective of quantum interference, an exciton picks up the

HMW phase in the ring and thus its wavefunction in the state m modifies to

Ψm(ϕ) ∝ ei(m+Φd/Φ0)ϕ. This leads the exciton transport properties to undergo

Aharonov-Bohm like oscillations due to fluctuation of transmission probability Tm

for state m as a function of flux Φd.[76] Possibility of controlling exciton transport

with quantum interference alone has been discussed in Ref. [77]. Considering

the counter-propagating waves, Ψu
m ∝ ei(m−Φd/Φ0)(2π−ϕ) in the upper arm (u) and

Ψl
m ∝ ei(m+Φd/Φ0)ϕ in the lower arm (l) of the ring, the interference at the exit

point ϕ at the output lead results in fluctuation of transmission probabilityas

Tm ∝ |Ψu
m + Ψl

m|2 = 2
[
1 + cos

(
2mϕ+ 2π

Φd

Φ0

)]
, (4.22)

where the first term in the cosine term represents the interference condition that
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depends on the geometrical connection of the contact leads to the ring. Construc-

tive interference takes place for ϕ = n π
m

giving rise to a pronounced resonant

transmission peak at the position of the otherwise degenerate energy levels of the

isolated ring, while no transmission takes place for ϕ = (n+ 1
2
) π
m

, due to destruc-

tive interference. In analogy to the electron transport through a quantum ring,

an interesting situation occurs when the contact leads split the degenerate energy

levels for the exit lead position other than n π
m

and (n + 1
2
) π
m

, n = 0, 1, 2, .....[78]

At this point, we wish to draw the attention to a fact that, at first glance, it may

appear that influencing exciton transport by tuning the interference effect requires

an extremely high magnetic field for Φd of the order of the flux quantum, Φ0. This

is not the case, though, as we will see in a moment. The transmission peaks for the

split energy levels by the asymmetric connection of the contact leads in a stacked

PAM ring are relatively distinct and well-resolved when the ring is coupled only

weakly to the contact leads. These peaks are then tuned by the magnetic field

for a transmission maximum (T ∼ 1), which corresponds to the overlap of the

transmission peaks when the field narrows down the energy gap. Thus, in a suit-

ably designed setup, the application of a magnetic field can control the exciton

transport through a molecular ring junction.

4.4.2 Exciton transport through a stacked PAM ring

For our model calculations, we consider the vertically positioned phenyl ring pairs

in the stacked PAM ring structure as single sites with the associated tight-binding
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parameters, viz., on-site energy εi = 0,∀ i ∈M and the nearest-neighbor hopping

integral between sites t〈ij〉 = 0.01,∀ 〈i, j〉 ∈M eV. The on-site energy is the energy

of the particle when it occupies a specific site, while the hopping integral is the

kinetic energy associated with the hopping from one site to the next. Whereas

the on-site energy does not affect the calculation other than accurate positioning

of the energy levels of the ring within the conductin energy window, the hopping

integral is important, the more precise the better. We consider the above values

in the lack of these parameters in the literature, however, one can still look into

the generic features. Within the tight-binding model, the stacked PAM under

consideration is essentially a hexamer with a side 0.5 nm.[40, 41] Considering the

interplanar separation in the MoSe2-WSe2 to be 0.4 nm,[52] the dipole moment of

the interlayer is 20 Debye. For the modulation of the transmission spectra, a radial

magnetic field of strength in the range (0 to 10 Tesla) is applied in the plane of

the PAM ring. Various possible setups for generating radial fields were discussed

in Chapter 3.

Of most importance is the geometrically asymmetric connection of the

contact leads to the stacked PAM rings. This is essential for the split of the oth-

erwise degenerate energy levels of the stacked PAM rings. Weak contact-molecule

coupling Γ = 0.001 eV [79] is considered so as to affect the relative distinct energy

levels and the associated sharp transmission resonance in the ring by the applied

magnetic field. The transmission spectrum T (E) as a function of exciton energy

E in the energy range as indicated for different field values is shown in Fig. 4.5
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Figure 4.5: (a) Transmission probability as a function of energy for transmis-
sion through a frontier orbital positioned at 1 eV for different values of magnetic
fields ~B, and (b) Current as a function of energy window ∆E = EMax − EMin

placed symetrically about 1 eV, for Γ = 0.001 eV, D = 0.6 cm2 sec−1 and
τ = 1.5 nsec.

(a). As is evident from the plot, at zero field, two distinct transmission peaks arise

corresponding to the split of degenerate energy levels by the geometrically asym-

metric connection of the contact leads. On the field application, the energy gap

narrows down and consequently, the transmission peaks come closer to each other

and eventually overlap when the energy gap reduces to zero. This corresponds to

T (E) ∼ 1 in the transmission spectrum. Beyond this, the area under each trans-

mission peak remains essentially constant. This leads to saturation in the current

values as shown in Fig. 4.5 (b). Emphasis must be laid on the requirement of a

weak contact-molecule coupling which together with a magnetic field can have a

significant impact on current conduction. Although there are several factors that

have detrimental effects on exciton transport but a suitably designed molecular

ring junction device would greatly improve the prospects of exciton current control

under an applied magnetic field.
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Figure 4.6: PL intensity as a function of length dR of the output contact lead
for different values of field strength for ∆E = 1 eV.

The PL emission taking place in the output lead over the length dR

is studied. The PL intensity is plotted as a function of length segment dR for

various field strengths. This is shown in Fig. 4.6. As all the excitons reaching the

output lead within their lifetime contribute to the PL intensity, the increase of PL

intensity nearly linearly with dR is expected at shorter lengths. However, for a

given exciton current, the majority of the excitons are annihilated much faster than

they diffuse, which causes PL saturation as dR is increased. It is the modulation of

the PL intensity by the applied magnetic field in the ring that may find potential

application in the emerging field of exciton-based optoelectronic devices.
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4.5 Summary and Concluding Remarks

We have considered light-driven exciton diffusion through a suitably designed bi-

layer TMD-PAM-TMD junction. Exciton diffusion into the stacked PAM ring

molecule is studied. Once inside the ring molecule, the excitons pick up an ad-

ditional phase in accordance with the HMW effect in the ring. For a low lead-

molecule coupling, the modulation of the HMW phase of the excitons by the

applied magnetic field has a significant effect on the transmission spectrum that

affects the exciton conduction through the molecule. This is also demonstrated in

the 1D continuum ring. The most basic prerequisite condition for realising this is

to have a geometrically asymmetric connection of the contact leads to the ring so

that the level degeneracy of the molecule is lifted by the contact leads alone. The

applied field then modulates the energy gap between the split levels, affecting the

exciton transport. The PL intensity resulting from the electron-hole recombina-

tion is studied and magnetic field influence is observed. The whole setup can be

viewed as the magnetic field-based control of light in a molecular ring junction.

A deeper study is necessary to make our findings an intuitive and compelling ar-

gument for the viability of creating excitonic devices and integrating them into

circuits, which will pave a new avenue for the development of future exciton-based

optoelectronic devices. Any progress on this otherwise unexplored subject and the

findings will be discussed elsewhere.
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Chapter5

Future Prospects

In this thesis, a variety of topics related to the Aharonov-Bohm (AB) and He-

McKellar-Wilkens (HMW) phases of charged particles and electric dipoles, re-

spectively, have been discussed. An attempt has been made to present a unified

description of the various quantum topological phases, including the dual-AB and

Aharonov-Casher (AC) phases of fluxon and magnetic moment. The associated

quantum effects are coherently described as being an exclusively local phenomena

by the local coupling of the hierarchy of multipole moments (charge, moment,

quadrupole) of the particles to their corresponding orders of external potentials

(potential, field, field-gradient). The AB effect is seen to be a case of a per-

fect shielding with no field overlapping, indicating that it is an energy-based phe-

nomenon. The observation of the HMW phase in the presence of a radial magnetic

field alone has been stressed in the context of the phase shift associated with a

moving electric dipole. This then conforms to the original proposal in spirit. A

practical setup for the HMW phase observation has been suggested. Observation

conditions with regards to various field configurations have been discussed. Fur-

thermore, the HMW phase is exploited in affecting the exciton transport in an
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optically driven molecular ring junction. The tight-binding model-based calcula-

tions show that the sensitivity of the exciton transport properties to the applied

magnetic field in a suitably designed device provides promising prospects for future

exciton-based optoelectronic devices.

Although the major goal of the thesis has been achieved, deeper accesse-

ments including the analytical validations and ab initio based computational tests

are highly warranted. Future works in this area are expected to involve physical

demonstration, or at the very least, simulations that accurately reflect the actual

physical scenario. We feel that this thesis may provide the necessary background

information and a stimulating discussion for these future works. The following are

some of the areas that have been identified to be worthwhile investigations.

� (1) Chapter 2: Experimental study of Boyer type-II effect to verify if the

effect is actually the entire interference pattern shift to establish that the

AB effect is not a force-based effect as contested otherwise.

� (2) Chapter 2: A deeper energy-based considerations may prove helpful in

overcoming AB’s non-locality issue to the effect that the vector potential is

treated as a fuzzy physical quantity.

� (3) Chapter 3: Examination of any physical effects concerning electric dipole’s

motion through a monotonic gradient of the vector potential.

� (4) Chapter 3: Observation of the HMW effect solely in a magnetic field in

the spirit of the original proposal.
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� (5) Chapter 4: Ab inito based calculations of the magnetic field control of

exciton transport in a light-driven exciton through a molecular ring junction.

� (6) Chapter 4: Experimental study of magnetic field effects on exciton cur-

rent for excitonic device applications in optoelectronics and optical commu-

nications.

The aforementioned points, however, require some justifications and thus the fol-

lowing brief overview is important.

(1) Boyer’s reactionary force-based analysis has been the most persuasive in its

attempt to explain the physical cause of the AB effect. Although this could be

viewed as investigating a quantum effect through classical physics, an analysis

so strong, convincing and compelling cannot be ignored. The surprising result

was the exact match between the force-based phase shift (Boyer type-II) and the

AB phase shift. The AB phase shift was then attributed to the classical electro-

magnetic lag effect in account of the longitudinal component of the force causing

relative displacement between the interfering charges for the phase shift. On closer

inspection, the transverse component appears responsible for the shift of the en-

tire envelope of the interference pattern, but this is not the genuine AB effect

wherein only the fringe shift occurs while the envelope is maintained stationary.

Any attempt to observe the classical lag effect inherently depends on the magnetic

field shielding efficiency of the setup.[1] We strongly believe that the genuine AB

effect corresponds to the perfect shielding case with no classical force whatsoever.

Thus, a careful study is necessary to confirm that the genuine AB effect is an
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energy-based effect rather than force-based.

(2) Overcoming AB’s non-locality issue inevitably demands asserting the physical

nature of the vector potential. It may be thought of as a fuzzy physical quantity,

as stressed in this work. It may sound strange and peculiar, but the fuzziness

is associated with its non-unique determination since it is non-gauge invariant.

Subject to a gauge transformation, the energy considerations may be helpful in

fixing the vector potential if the magnetic energy density computed from the vec-

tor potential alone is identical to that derived independently from the magnetic

field within a given tolerance. We will not push this perception too far, instead

expect the enthusiasts to explore along this line for any possible implications that

may be unveiled and discussed in the context of the issues in question. However,

working towards the reality of the vector potential demands careful consideration

and compliance with the gauge symmetry.

(3) Interaction of an electric dipole with a magnetic field emanates from the cou-

pling of dipole moment with the motional electric field, which has a component

that depends on the gradient of the vector potential. Therefore, it is very en-

couraging to investigate the physical impacts that the different vector potential

configurations have on the moving dipoles shown in Fig. 5.1. The gradient of the

vector potential varies depending on the arrangement, but a highly abrupt decline

in the vector potential at the ends is considered in all cases. The interferometric

setups shown are reminiscent of the setup for the AB effect using ring torus.[2]
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Figure 5.1: Dipole interferometer with one of the arms through (a) frustum
torus, (b) cylindrical torus, and (c) an hourglass-shaped torus. Only the vector
potentials at axial points are shown with a magnitude proportional to the length

of arrows.

Should the gradient of vector potential bear any effects, the cylindrical torus and

hourglass-shaped torus do not exhibit any effects because the vector potential is

uniform in the case of the cylindrical torus and zero in the latter. This is because

the increase in the vector potential in the first half is offset by a decrease in the

other half.

(4) The original focus of the HMW effect was the observation of the quantum

mechanical phase of an electric dipole in a radial magnetic field. Several field

configurations were offered, including the one in the most recent experimental

demonstration,[3, 4] but they did not draw attention to the need for the radial

magnetic field as originally proposed. Although the use of crossed-electric and

magnetic fields eliminates the requirement for a radial magnetic field for the pur-

pose, the disadvantage of employing the crossed-electric and magnetic fields is
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the emergence of the stray effects associated with the Stark effect that makes ex-

tracting the HMW phase difficult. Thus, the observation of the HMW effect in

the presence of a radial magnetic field alone is still worth trying and remains a

challenge. Our proposed setup could be useful to test the effect using some stable

molecules with dipole moment exceeding 10 Debye.

(5) While the model-based calculations capture only the generic features of the

physical situations the molecular junction devices are exposed to, the ab initio

calculations are, however, computationally demanding but accurately represent

the physical situations as they include many-body effects and incorporate vari-

ous excitation processes. This is crucial to determine whether the sensitivity to

magnetic field influence endures in the face of detrimental effects such as thermal

dephasing that results in decoherence. The non-equilibrium Green’s function den-

sity functional theory (NEGF-DFT) with a tight-binding formulation holds a great

promise for transport computations. Simulated calculations of light-driven exci-

tonic transport through a variety of molecular junction devices are necessary for

predicting the characteristic transport features for device applications in exciton-

based optoelectronic devices.

(6) Magnetic field-based control of light can be achieved in molecular ring junc-

tions. Experimental demonstrations should be feasible with a variety of suitable

2D materials for exciton generation by photoexcitation and their field-based con-

trol of transport through the molecular rings bridging such materials accompanied
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by field-modulated photoluminescence at the output. Such exciton-based devices

hold great promise for technological applications as well as providing a greater un-

derstanding of happenings at the microscopic level since direct images of exciton

propagation can be achieved via tip-enhanced near-field optical microscopy.

It is observed that significant progress has been made over the years in demonstrat-

ing the decades-old fundamental discoveries of the various quantum topological

phases. This is important because it confirms the true nature of the fundamental

interactions. It has been noted that despite their discoveries long ago, very few

attempts have been made to put them into practical applications. The majority of

efforts have been focused on the theoretical understanding of the quantum topo-

logical phases, while very few studies have attempted to utilise these phases. The

present technologies could be refined with capabilities to fully utilise the topolog-

ical phases and their associated effects for device applications.

We believe that the studies made over the years culminating in the form

of a thesis represent the actual physical scenario, but a careful and thorough as-

sessment through the experimental methodologies is indispensable to validate our

findings. Undoubtedly, further research is needed, but with the rapid development

of experimental techniques, we express a great hope that the results of the work

carried out in the present venture will be realized. Until then some of our findings

in the present endeavor may remain elusive.
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