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Landslide is considered as one of the most devastating and most costly natural

hazards in highlands, which is triggered mainly by rainfalls or earthquakes. In

comparison with other methods, landslide mapping and monitoring via remote

sensing data products are considered as the least expensive method of data

collection. The current research attempts to detect landslides which occurred due

to a 6.9 magnitude earthquake in Sikkim Himalaya, India, on 18 September 2011

and also to establish the spatial relationship between landslides and the slope of

the terrain. To detect the landslides, decision tree method was applied on two

Indian remote sensing satellites linear imaging self-scanning sensor (LISS III)

images acquired from 2007 and 2011 which were taken before and after the

earthquake. As the study area was relatively huge for identifying the landslides,

the region was separated into two parts: “tested study area” and “real study area”.

The overall accuracy of landslide detection was 76%, and 75% for tested and real

study area, respectively. Then, the spatial relationship between the landslides and

the slope of the terrain was conducted using the digital elevation model. The

results revealed that most of the landslides occurred between the slope of 25� and
45� covering 2.3 km2 and no landslide recorded in the slope of 65�–90� in the real

study area. The results obtained in this study may be useful for decision-making

and policy support towards reconstruction effort after the landslide occurrence. In

addition, the information can be useful for reducing the risk of potential damages

to substructures and properties by developing new and efficient strategies.

1. Introduction

Landslide is considered as a major natural hazard, making serious damages to lives

and properties in all mountainous areas worldwide (Herv�as et al. 2003; Althuwaynee

et al. 2014a). They comprise widespread and significant type of geological risks,

which requires huge amount of money for the damages they leave (Dai & Lee 2002;

Singhroy & Molch 2004; Fourniadis et al. 2007; Huang 2009). Though the

*Corresponding author. Email: biswajeet@upm.edu.my

� 2014 Taylor & Francis

Geomatics, Natural Hazards and Risk, 2016

Vol. 7, No. 1, 326–344, http://dx.doi.org/10.1080/19475705.2014.898702

mailto:biswajeet@upm.edu.my
http://dx.doi.org/10.1080/19475705.2014.898702


occurrence of landslides is inhibited and caused by a range of geological and geomor-
phological features, there might be some triggering factors, such as earthquakes and

heavy rainfalls, in any area (Srivastava et al. 2010; Pourghasemi et al. 2013). Similar

to other natural disasters, such as floods, earthquakes and avalanches, it is usually

hard to predict the landslides (Tehrany et al. 2014). They are required to be recorded

by mapping and other organized description procedures since they have potentially

unknown harmful consequences (Pradhan et al. 2010; Tien Bui et al. 2012b). In order

to have a better understanding of the nature of the terrain, it is required to monitor

activities of the landslide and to predict the spatio-temporal slope failures (Van Westen
et al. 2008; Sato & Harp 2009; Althuwaynee et al. 2014b). There are too many contrib-

uting factors involved in the formation of landslides such as geology, weather, wave

actions, gravity and ground water (Iverson & Major 1987). Landslides often occur on

the steep slopes; however, they may happen in the low slope areas (DeRose et al.

1991). Landslides might happen because of the failure of the river precipice, cut and

fill problems that may be the consequence of the excavations of roads and buildings,

failure of mine-waste heaps and gradient problems linked with quarries and open-pit

mines (Swanson & Dyrness 1975). Underwater landslides, which occur under the
water generally, happen in the regions with low relief and small gradients in lakes and

reservoir areas or offshore maritime surroundings (Watts 1998).

In general, landslides happen when multiple numbers of the aforementioned factors

occur at the same time. The natural aspects associated with landslides are gravity, geo-

graphical elements, heavy rainfalls, waves, jungle fire, volcanoes and earthquakes. Seis-

mic activities are considered as the primary source of the landslides (Broothaerts et al.

2012). In addition, ashy waste flows caused by earthquakes may trigger massive soil

movement. Furthermore, anthropogenic activities play an important role in initiation
of the landslides. The causal mechanisms are complex interactions between seismic fac-

tors and morphology-related terrain factors, materials involved in the slope, hydrol-

ogy, terrain use and geomorphology (Esposito et al. 2000; Sato & Harp 2009).

The Sikkim and adjacent area are well-known seismically active areas of the

Alpine–Himalayan seismic belt in which four enormous earthquakes of scale of 8.0

and above happened in 2011. Earthquakes occurred in this area are generally linked

with the pressure accumulation caused by the northward tectonic movement of the

Indian Plate and consequent rapid release of it (De & Kayal 2003.). The steady
resources of devastation of the possessions and detrimental effects on lives are the

earthquake-induced landslides. In comparison with the other regions in Himalaya,

Sikkim has been fairly an active seismic area in previous era. Some of the responsible

factors for loss of life, infrastructures breakdowns and associated financial losses

were stone falls, landslides and mudslides. The urgent priority after a landslide catas-

trophe is to perform relief and rescue procedures that are usually affected by lack of

appropriate details about the location, size and the quantity of landslides in moun-

tainous regions which are highly inaccessible (Chan & Huang 2012). Hence, rapid
detection of landslides is indispensable for quick damage estimation and emergency

reactions for the management activities of a catastrophe. Hence, current research

aims to perform landslides detection for the part of the Sikkim Himalaya using

advanced rule-based decision tree (DT) method.

2. Related work

Some of the main tools for landslide detections are the conventional techniques; for
instance, visual analysis and perception of stereoscopic aerial photographs and field
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survey. However, in these traditional methods, the experience of the interpreter plays
an important role. According to Metternicht et al. (2005) and Tralli et al. (2005),

remote sensing (RS) technology provides detail information about landslides for pol-

icy-makers and emergency managers. Identifying and detecting of landslides by RS

technology are based on three main features of the sensors: spatial, spectral and tem-

poral resolutions (Gao 1999). The advancement of satellite technology and develop-

ment of sensors have resulted many cutting edge technologies, such as interferometry

(Kimura & Yamaguchi 2000; Lauknes et al. 2010; Cigna et al. 2011; Jebur et al.

2013b), differential interferometry (Guzzetti et al. 2009), change detection (Nichol &
Wong 2005; Mondini et al. 2011; Al-shalabi et al. 2013; Tehrany et al. 2013b), image

classification (Chang et al. 2007), digital terrain model differencing (Dewitte &

Demoulin 2005) and object-oriented analysis (Martha et al. 2010a, 2010b; Stumpf &

Kerle 2011), for landslide detection (Booth et al. 2009; Parker et al. 2011).

Generally, the visual analysis of space-borne imagery is appropriate for the detec-

tion of ground movements (Owen et al. 2008) such as estimation of fractures (Yous-

sef et al. 2009) and preparation of landslide inventories. Among several supervised

techniques for landslide detection, maximum likelihood classification (MLC) is the
most commonly used method. Borghuis et al. (2007) used a supervised MLC method

to detect the typhoon-caused landslides in Taiwan. Non-parametric models are the

other large category of supervised classifiers; for instance, linear discriminators, sup-

port vector machines (SVM), artificial neural networks (ANN) and random forests

(Epanechnikov 1969). A comparison between MLC and ANN for landslide detection

based on advanced space-borne thermal emission and reflection radiometer

(ASTER) images showed that ANN outperformed the MLC (Danneels et al. 2007).

Generally speaking, for land use/cover (LULC) classification, unsupervised meth-
ods are preferable. Dymond et al. (2006) used unsupervised classification for bright

regions on gradients steeper than 50 in the Manawatu–Wanganui region of New

Zealand. Nevertheless, landslides greater than 10,000 m2 was merely checked and

there was no independent data-set for verification. Joyce et al. (2008) tested eight dif-

ferent landslide-mapping methods using Satellite Pour l’Observation de la Terre

(SPOT-5) imagery. The results showed that the semi-automated methods, such as

spectral angle mapper, supervised classification and normalized difference vegetation

index (NDVI) thresholding, were more precise than parallelepiped, principal compo-
nents, multi-temporal image differencing and minimum distance. According to Joyce

et al. (2009), if change detection can be provided by the multi-temporal imagery of a

designated area, it will be the most efficient approach for landslide mapping and

monitoring. The change detection has been known for a long time for various appli-

cations such as LULC change assessment. In another paper, Cheng et al. (2004) per-

formed change-detection method by differencing the ratios of the band of IR and red

channel SPOT images for landslide mapping. A threshold for change which was

gained from the histogram of difference image was set manually. In order to elimi-
nate the non-related changes to the landslides, a slope mask of 22� was used.

Nichol and Wong (2005) studied a number of change-detection techniques for the

detection of landslides, together with the elimination of single bands and ratios of

the band and post-classification evaluations by means of neural network classifier

and MLC. The results revealed that MLC outperformed other methods. Rau et al.

(2007)analysed a sequence of optical satellite imagery with the resolution of 19 days

in terms of temporal resolution during 2.5 years. In their research, the CVA and

NDVI were combined to detect the changes with experimental thresholding. This
method was capable of monitoring three main typhoon-triggered landslides and the
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seasonal dynamics. The other important study in this field was done by Herv�as et al.
(2003), in which the image differencing and automated thresholding methods were

combined. This combination permitted to distinguish between change and no-change

regions. In order to distinguish the landslide-active regions, they implemented a

rectangular spot elimination technique on the threshold of difference image.

Furthermore, this technique was useful for the long-lasting monitoring of landslides

as well, particularly in case of availability of better spatial and temporal resolution

data-sets.

Jebur et al. (2013b) detected landslides using InSAR in tropical Malaysia.
Although the proposed method decreased the work load and time, some weak

points can be seen in the performance of InSAR to detect the landslides in dense

vegetated regions. Another drawback of this method is the requirement of at least

two pairs of SAR imageries for analysis which is not possible to be prepared in

some data scarce areas. Based on the aforementioned literature, many methods exist

to recognize the landslide locations, while each method has some drawbacks. There-

fore, more accurate method needs to be established in order to detect these locations

through more precise automatic or semi-automatic approaches. A DT is a mecha-
nism to discover and describe the data structural patterns in the form of tree struc-

tures; it is not required to have a relationship between all the input variables and

the goal variables in a DT. The DT can calculate information on various scales,

with no prior assumptions needed on the incidence of the non-linear relationship of

data distribution (Friedl & Brodley 1997; Pal & Mather 2003). The procedure of

DT depends on training sites and input description which are generally defined by

the user to form a set of rules identifying types of LULC derived from the values of

description to allocate each pixel to a class (Pradhan 2013; Tien Bui et al. 2012a).
In a recent paper, Pradhan (2013) compared three different methods (i.e. DT, SVM

and adaptive neuro-fuzzy inference system (ANFIS)) in prediction performance for

landslide susceptibility mapping. By using these approaches, he produced 15 land-

slide susceptibility maps, which were then validated by landslides locations and the

result of his study showed that landslide susceptibility mapping using DT, SVM

and ANFIS is viable. The aim of the current research is to perform DT method to

set the rules in order to detect the landslide locations through the semi-automated

approach.

3. Study area

Sikkim is situated in the mountainous area in eastern Himalaya and it is located

between 28� 0704800 and 27�0404600 north latitudes, and 88�0005800 and 88�5502500 east
longitudes (figure 1). It is surrounded by Tibet from north side, Nepal from west

side, Bhutan from the east side and West Bengal to its south side. Sikkim has a rect-
angular shape with 7,096 km2 of area, with 114 km and 64 km from North to South

and from East to West, respectively. Sikkim is a significant state for India from

defence strategic point of view.

The climate of the region varies from tropical to alpine, as a result of variations in

the topography and closeness of the state to tropics. From middle of the June till

September, it is summer or monsoon and the rainfall level is between 130 cm and

430 cm at most. The highest and lowest temperature varies between 21�C and 37�C
and between 13�C and 23�C, respectively. The historical earthquake data revealed
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that the Sikkim and its adjacent areas are affected by modest to immense earth-

quakes previously. Some of the most important earthquakes which had affected the

region are:

(1) Cachar earthquake of 10.01.1869 (M 7.5),
(2) Shillong plateau earthquake of 12.06.1897 (M 8.7),

(3) Dhubri earthquake of 02.07.1930 (M 7.1),

(4) Bihar–Nepal border earthquake of 15.01.1934 (M 8.3),

(5) Arunachal Pradesh–China border earthquake of 15.08.1950 (M 8.5) and

(6) Nepal–India border earthquake of 21.08.1988 (M 6.4).

List of the earthquakes in Sikkim in most recent six years are:

� 14 February 2006 – Mana, North Sikkim (M 5.3),

� 18 May 2007 – Nambu, North Sikkim (M 4.6),

� 20 May 2007 – Singyang, North Sikkim (M 5.0),

� 18 September 2011 – Sikkim–Nepal border region (M 6.9) and

� 18 September 2012 – Sikkim (M 4.5).

A 6.9 magnitude earthquake occurred in Sikkim on 18 September 2011 at 12:40: 51

UTC. As stated by USGS, the epicentre of earthquake was positioned at 27.730�N
and 88.155�E, close to the India–Nepal border, around 68 km, northwest (NW) of

Gangtok and at a depth of 50 km. As a result of the earthquake, numerous landslides

happened exactly from the Himalayan foothill area (e.g. Dudhia in Kurseong subdi-

vision, Darjeeling district and West Bengal) to the upper area of the Himalayan

region of the Sikkim–Darjeeling Himalayas. It was mentioned that the least number

of people killed by earthquake was 111 and the majority of deaths happened in

Sikkim.

Figure 1. Study area.
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4. Data used

One of the major factors in the analysis of probabilistic landslide mapping is the

accurate detection of the landslides. According to Pradhan et al. (2011), RS techni-

ques, such as satellite imagery, assist to detect landslides in a cost- and time-effective
way. The data used in this study for analysis were gathered in two different days.

Indian RS satellites (IRS) linear imaging self-scanning sensor (LISS III) images

which were taken from 23 December 2007 to 08 November 2011 were used in the cur-

rent research. The efficiency of IRS LISS III data has been proven by various

researches in landslide studies (Dimri et al. 2007; Chander et al. 2008; Mathew et al.

2009; Chauhan et al. 2010). Sarkar and Kanungo (2004) have used this data in land-

slide detection. The other category of data used in this work was digital elevation

model (DEM) acquired from ASTER with the spatial resolution of 30m which was
taken on 17 November 2011. Furthermore, an image of Earth Observing-1 (EO-1)

was taken after the earthquake to detect the exact location of the landslide through

the visual interpretation in order to examine the detected landslide acquired from

DT.

5. Methodology

The landslide-detection analysis is one of the important steps in landslide manage-

ment which is conducted by DT method. The practical and theoretical aspects of

landslide mapping in this study involve several steps. The methodology, which was

used in this study, is shown in figure 2.

Figure 2. Work flow of the methodology of this study.
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DT is a strong rule-based method which is broadly used in data classification, pre-
dictive modelling and many more (Tien Bui et al. 2012b; Jebur et al. 2013a; Tehrany

et al. 2013c). As it is asserted by Pal and Mather (2003), DT is a substitute classifica-

tion technique, which is located in the category of non-parametric and hierarchical

classification. The tree is made by a root node, a set of internal nodes and a set of ter-

minal nodes. Each node of the tree creates binary decision that separates the classes.

This process continues and the tree moves down until the terminal node (Tehrany

et al. 2013a). There are other important advantages of using this classifier: its ability

of using different measurement scale data as well as its independency to former
assumptions (Jebur et al. 2013a). Moreover, its procedure is much easier and under-

standable compared to other methods such as ANN. In a recent paper, Pradhan

2013 stated that the processing of DT depends on the user-defined input images and

training sites to form a set of rules with the intention of determining the LULC cate-

gory, derived from imagery values towards assigning a pixel to a class.

To begin, the study area was divided into two separate parts; the real study area

and the tested study area (figure 3). The purpose was to generate the rules for the

tested study area and transfer them to the real study area in order to examine the effi-
ciency of the developed rules and selected method.

Training sites were digitized in ENVI 4.8 software as small areas within images to

be representative of some features in the study area. Within these training sites, each

Figure 3. Tested and real study area.
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pixel was categorized into the specific classes such as vegetation, soil, etc. Assignment
of each pixel to the appropriate class was made based on the analysis of the men-

tioned training sites, which were extracted from IRS (LISS III) imageries. These

training sites were used to extract the spectral signature of each feature type in order

to be used in defining the rules for each class. To build the DT rules, first B3 (red

band in IRS (LISS III) imagery) was used to separate the snow area from whole

study area which produced two branches of snow and non-snow (figure 5). The red

band equalling to zero represented the class of snow and the remaining area was

belonged to the non-snow class.
Subsequently, NDVI was calculated for both the images acquired from before and

after the earthquake occurrence. NDVI is a specific tool that can separate vegetation

from other classes precisely (van Leeuwen et al. 2006). The study area is predomi-

nantly covered by vegetation; consequently, this index is appropriate for processing

of the data (Pettorelli et al. 2011). The purpose is to detect the landslide areas by

measuring the DNDVI. When the landslide takes place in an area, the vegetation cov-

erage will be moved and that area will be replaced by the soil, therefore the NDVI

will be decreased. Hence, the difference between the measured NDVI will show the
landslide locations. The NDVI can be measured using equation (1).

NDVI¼ NIR � Red

NIR þ Red
ð1Þ

This index is considered to be the most used vegetation index (VI) and its values

range from �1 to 1. The DNDVI was calculated using equation (2) and the results

are shown in figure 4 (Bradley &Mustard 2006; Pantaleoni et al. 2007).

DNDVI ¼ NDVI ðafter earthquakeÞ � NDVI ðbefore earthquakeÞ ð2Þ

Once the DNDVI was measured, the area was partitioned into two branches of

vegetation and non-vegetation using this index. This non-vegetation area is made up
by landslide areas and the class of soil. Therefore, B2 which is near infrared band

was used to separate the soil from the landslide locations. The rule for this step was

defined using the soil spectral signature which was acquired using the analysis of

training sites. The remaining class was represented by the landslide area (figure 5).

Slope is one of the most influential contributing factors in landslide occurrence, as

the slope degree increases, the possibility of the landslide occurrence increases as

well. Dai and Lee (2002) stated that slope has a great effect on the landsliding. To

realize the relation between landslides and the slope of the terrain, it is essential to
consider the distribution of the slope categories using the available DEM. Figure 6

illustrates the DEM and the derived slope contributing factor in the current research.

Landslide locations were classified based on the various slope ranges; 0�–25�, 25�–
45�, 45�–65� and 65�–90�. As it can be seen in the methodology work flow, first, all

the processes were applied to the tested study area. The rules were modified until a

reasonable accuracy was achieved. When the results for tested study area became

acceptable, the same rules were applied to the real study area and subsequently the

same process was carried out to obtain the results.
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6. Results and discussion

6.1. Tested study area

The generated rules were applied on the tested study area and the landslides spatial

distribution map was produced by the DT model and is shown in figure 7. The three

different views of landslide areas are shown in figure 8. The first one is representing

Figure 4. DNDVI for (a) tested study area and (b) real study area.
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the spatial distribution map created by DT model. The second view illustrates the

captured image from LISS III and the third one shows the EO-1 captured image.

Due to the precision of EO-1 imagery, the landside location can be seen clearly.

The relation between slope of the terrain and the landslides was determined
through the classification of landslide locations based on the mentioned slope ranges.

Results showed that about 16% of the landslides occurred in the terrain with slope of

0�–25� (i.e. 1 km2). The surface area of landslides occurred in the slopes of 25�–45�

and 45�–65� were 2.5 km2 (40%) and 2.3 km2 (38%), respectively. According to table 1

as well as figure 9(a), 0.3 km2 of the landslides happened in the slope of terrain

between 65� and 90�.

Figure 5. Statistical developed decision tree classification for the detection of landslides.
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Figure 6. (a) The elevation map and (b) the slope map of the study area.

Figure 7. The spatial distribution of landslides.
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Validation was performed using confusion matrix and the kappa coefficient, over-

all accuracy, user accuracy and producer accuracy were measured. The numerical

form of the results is shown in table 2 together with the graphical results in figure 10
(a). The user and producer accuracy of vegetation were 77.8% and 84.0%, respec-

tively. Moreover, the user and producer accuracy of soil were 75.9% and 62.9%,

respectively. The landslide area producer accuracy was 76.6% with the user accuracy

of 73.2%. Finally, the overall accuracy and kappa coefficient were 76.1% and 0.7,

respectively.

Based on the acquired accuracies, it can be seen that DT method was able to pro-

duce the highest accuracies for the class of vegetation, while low producer accuracy

was obtained for the class of soil. Furthermore, landslide locations were classified
with an acceptable accuracy which was the main goal of the current research.

Figure 8. (a) Landslides detected by DT method; (b) the same area in LISS III image and (c)
the same area in EO-1.

Table 1. The surface area and percentage of landslides by the slope separation in tested and
real study area.

Tested study area Real study area

The slope of landslide Area (km2) Percentage (%) Area (km2) Percentage (%)

0�–25� 1 16 1.5 31
25�–45� 2.5 40 2.3 46.9
45�–65� 2.3 38 1.1 22.1
65�–90� 0.3 6 0 0
Total 6.2 100 5.1 100
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6.2. Real study area

To detect the landslide locations in the real study area, same rules for tested study

area were applied. The landslide spatial distribution map produced by DT in real

study area is illustrated in figure 11. The same process was carried out to find out the

relation between landslides and the slope of terrain in real study area and the result is
shown in table 1 and figure 9(b).

The user accuracy and producer accuracy for vegetation were 81.4% and 80.2%,

respectively. As it has been mentioned in the previous section, DT showed high preci-

sion in classifying the vegetation area. User and producer accuracy for soil were

74.6% and 71.3%, respectively. Landslide locations were classified by 68.1% and

72.9% user and producer accuracy, respectively. As shown in table 2 and figure 10

(b), the kappa coefficient was 0.7 and the overall accuracy was 75.0%.

Similar to the tested study area, the relation between slope of the terrain and the
landslides was determined. Results revealed that about 31% of the landslides

occurred in the terrain with slope of 0�–25� (i.e. 1.5 km2). The surface area of

Figure 9. The area and percentage of landslides by the slope separation in (a) tested study
area, (b) real study area and (c) full study area.

Table 2. User accuracy, producer accuracy, overall accuracy and kappa coefficient for the
results derived for tested and real study area.

Tested study area Real study area

Class
User accuracy

(%)
Producer accuracy

(%)
User accuracy

(%)
Producer accuracy

(%)

Vegetation 77.8 84.0 81.4 80.2
Soil 75.9 62.9 74.6 71.3
Landslides 73.2 76.6 68.1 72.9
Overall accuracy (%) 76.1 75.0
Kappa coefficient 0.7 0.7
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Figure 10. Graph of the producer and user accuracy: (a) tested study area and (b) real study
area.

Figure 11. The spatial distribution of landslides in real study area.
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landslides occurred in the slopes of 25�–45� and 45�–65� were 2.3 km2 (46.9%) and
1.1 km2 (22.1%), respectively. None of the landslides occurred in the terrain with

slope between 65� and 90�. Table 1 and figure 9(b) represent these relationships.

7. Conclusion

Valuable information can be achieved using landslide inventory maps which are

essential requirement for variety of policy and decision-making. Providing the effi-
cient and rapid landslide detection method is the most difficult challenges in such

analysis, as the most of the methods are time consuming and costly. The main objec-

tive of this paper was to detect earthquake-induced landslides in Sikkim Himalaya,

India, in 2011 by means of rule-based DT technique using IRS satellite images. The

proposed method is an efficient rule-based method which has a flexible structure

with reasonable performance. In order to detect the landslide location, multi-tempo-

ral images of IRS (LISS III) captured from 2007 (i.e. before earthquake) and 2011

(i.e. after earthquake) were used.
DT method was based on the defined rules which were acquired using the spectral

signature of each feature. The study area was divided into two parts: tested study area

and real study area. DT was performed and the rules were derived for the tested study

area. The same rules were applied on the real study area in order to examine the effi-

ciency of the DT method and transferability of the rules. It is the main requirement of

natural hazard methods to be transferable from one study area to another, as the

time has vital role in early warning and prevention actions. Landslide locations were

detected in both study areas and the validation has been done using confusion matrix.
The overall accuracies which were achieved form DT analysis for tested study area

and real study area were 76.1% and 75.0%, respectively. In addition, the kappa coeffi-

cient for both tested and real study area was 0.7. Moreover, the results revealed that

the area of landslides in tested area was 6.2 km2 and that of real area was 5.1 km2.

Using slope which was derived from DEM, the relationship between the landslide

locations and slope was assessed. The rules of this analysis were defined using DT for

both tested and real study areas. Results showed that the most (2.5 km2 (40%)) and

the least (0.3 km2 (6%)) landslides occurred in the slopes of 25�–45� and 65�–90�,
respectively, correspondingly in the tested study area. In comparison with the tested

study area, most of the landslides took place in the area of 2.3 km2 (46.9%) between

the slope of 25� and 45� and no landslides happened between the slope of 65� and

90� which showed the least occurrence of landslides in the real study area. The pro-

posed method had some advantages such as quick performance with reasonable

accuracy. Furthermore, it could establish the relationship between the landslides and

the slope of the terrain. It is worth to mention that obtained results of this study

could be used to decrease the risk of potential damages to substructures and proper-
ties by developing new and well-organized strategies. In addition, they are also help-

ful for policy supports and decision-making in reconstructions after the occurrence

of a disaster.
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