
Expert Systems With Applications 97 (2018) 405–420

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A detection framework for semantic code clones and obfuscated code

Abdullah Sheneamer a , b , ∗, Swarup Roy

c , d , Jugal Kalita

b

a Faculty of Computer Science & Information Systems, Jazan University, Jazan 45142, Saudi Arabia
b College of Engineering & Applied Science, University of Colorado, Colorado Springs, CO 80918, USA
c Department of Computer Applications, Sikkim University, Sikkim, Gangtok 737102, India
d Department of Information Technology, North-Eastern Hill University, Shillong 793022, India

a r t i c l e i n f o

Article history:

Received 17 May 2017

Revised 21 December 2017

Accepted 22 December 2017

Available online 29 December 2017

Keywords:

Code obfuscation

Semantic code clones

Machine learning

Bytecode dependency graph

Program dependency graph

a b s t r a c t

Code obfuscation is a staple tool in malware creation where code fragments are altered substantially to

make them appear different from the original, while keeping the semantics unaffected. A majority of the

obfuscated code detection methods use program structure as a signature for detection of unknown codes.

They usually ignore the most important feature, which is the semantics of the code, to match two code

fragments or programs for obfuscation. Obfuscated code detection is a special case of the semantic code

clone detection task. We propose a detection framework for detecting both code obfuscation and clone

using machine learning. We use features extracted from Java bytecode dependency graphs (BDG), pro-

gram dependency graphs (PDG) and abstract syntax trees (AST). BDGs and PDGs are two representations

of the semantics or meaning of a Java program. ASTs capture the structural aspects of a program. We

use several publicly available code clone and obfuscated code datasets to validate the effectiveness of our

framework. We use different assessment parameters to evaluate the detection quality of our proposed

model. Experimental results are excellent when compared with contemporary obfuscated code and code

clone detectors. Interestingly, we achieve 100% success in detecting obfuscated code based on recall, pre-

cision, and F1-Score. When we compare our method with other methods for all of obfuscations types,

viz, contraction, expansion, loop transformation and renaming, our model appears to be the winner. In

case of clone detection our model achieve very high detection accuracy in comparison to other similar

detectors.

© 2017 Elsevier Ltd. All rights reserved.

1

t

o

t

m

p

t

t

s

T

t

o

o

I

s

o

p

o

o

w

o

m

i

(

o

p

h

c

o

h

0

. Introduction

Code obfuscation is a technique that alters the original con-

ent of the code in order to sow confusion. Malware creators use

bfuscation to camouflage existing malicious code and make the

ask of signature based malware detection tools challenging. Auto-

ated code obfuscation tools make malware development a child’s

lay even for non-professional attackers. Traditional malware de-

ection tools based on a priori known signatures become ineffec-

ive due to the morphing of earlier known malicious code. As re-

ults, computer systems become more prone to zero-day-attacks.

he positive use of code obfuscation is equally important for pro-

ecting intellectual property rights of proprietary software. Code

bfuscation prevents attackers from malicious reverse engineering
∗ Corresponding author at: College of Engineering & Applied Science, University

f Colorado, Colorado Springs, CO 80918, USA and Faculty of Computer Science &

nformation Systems, Jazan University, Jazan 45142, Saudi Arabia

E-mail addresses: asheneam@uccs.edu (A. Sheneamer), sroy01@cus.ac.in ,

warup@nehu.ac.in (S. Roy), jkalita@uccs.edu (J. Kalita).

a

s

a

E

c

a

ttps://doi.org/10.1016/j.eswa.2017.12.040

957-4174/© 2017 Elsevier Ltd. All rights reserved.
f sensitive parts of a software project and helps prevent software

iracy (Collberg & Thomborson, 2002). However, we concentrate

nly on the negative aspect of the problem, i.e., assuming that code

bfuscation is malicious and detecting it is necessary. The common

ay to perform camouflaging is to change the syntactic structure

f the code, keeping the semantics and functionality of the original

alware invariant. Obfuscation techniques transform a code block

n two different ways, using metamorphism and polymorphism

 Christodorescu, Jha, Seshia, Song, & Bryant, 2005). Metamorphism

bfuscates the entire code by inserting certain dead code, and by

erforming code substitution and code transposition. On the other

and, polymorphism uses transformations to obfuscate loops in the

ode. Existing malware detectors treat malware code as a sequence

f bytes and extract a signature to classify it by matching with

 database of known malware signatures. Syntactic or structural

ignatures are weak and ineffective in detecting camouflaged code

nd are overlooked easily by signature based malware detectors.

ffective anti-malware software based on semantic structure of the

ode is a current need to mitigate the issue of ever-evolving vari-
nts of known malware.

https://doi.org/10.1016/j.eswa.2017.12.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.12.040&domain=pdf
mailto:asheneam@uccs.edu
mailto:sroy01@cus.ac.in
mailto:swarup@nehu.ac.in
mailto:jkalita@uccs.edu
https://doi.org/10.1016/j.eswa.2017.12.040

406 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

w

C

D

a

s

l

t

(

S

w

t

h

c

s

t

e

o

r

t

a

l

t

t

t

s

r

w

o

i

o

s

c

m

f

p

m

i

t

i

c

s

i

d

p

o

t

f

o

v

p

n

i

p

T

s

S
In this work, we focus only Java code and develop a machine

learning framework for effective detection of code obfuscation. We

model obfuscated code detection as a kind of semantic code clone

detection. We use syntactic and semantic features of pairs of orig-

inal and target code fragments for detection of possible obfuscated

code.

We explore new features which are extracted from Java byte-

code and BDGs and then combine them with features from ASTs

and PDGs. The contributions of the paper are as follows.

• We propose an integrated framework for detecting Java code

clones and obfuscated code using program or code features ex-

tracted from target pairs of codes.
• We use high level source code features from ASTs and PDGs of

the code.
• We explore a new way of using low level features from Java

bytecode and BDG to detect code clones and obfuscation. To the

best of our knowledge this attempt is a first of its kind to use

features from both Java bytecode and BDGs to detect semantic

code clones and obfuscation using machine learning.
• We use an ensemble of state-of-the-art classification models to

evaluate the effectiveness of our proposed idea.

We organize the paper as follows. Section 2 discusses the back-

ground of code clone detection and code obfuscation. Prior re-

search in the area is discussed in Section 3 . In Section 4 , we pro-

pose a new machine learning framework for detection of both code

clones and obfuscated code. We evaluate and compare our pro-

posed method and report findings in Section 5 . Finally, we con-

clude our work in Section 7 .

2. Background

Code clone detection is a well-known problem in software

engineering (Juergens, Deissenboeck, Hummel, & Wagner, 2009).

Clones are broadly classified into two types, syntactic and seman-

tic clones (Roy & Cordy, 2007; Roy, Cordy, & Koschke, 2009). Very

often syntactic clones are further classified into Exact Clones (Type

I), Renamed Clones (Type II) and Gapped Clones (Type III).

Two pieces of code are Exact Clones of each other if they are

exactly the same except whitespace, blanks and comments. Re-

named Clones are similar except for names of variables, types, lit-

erals and functions. Gapped Clones are the clones if they are sim-

ilar, but with modifications such as added or removed statements,

and the use of different identifiers, literals, types, whitespace, lay-

outs and comments. Two pieces of code are Semantic Clones, if

they are semantically similar without being syntactically similar.

Code obfuscation is a form of semantic code cloning where two

malicious pieces of code may be structurally or syntactically dis-

similar, but semantically behave in a similar way. Below we define

code obfuscation in a more formal way. We start with what do we

mean by code.

Definition 1 (Code) . A piece of code C is a sequence of statements,

S i , i = 1 , · · · , M, comprising of programming language specific exe-

cutable statements such as loops, logical statements and arithmetic

expressions:

C = 〈 S 1 , · · · S M

〉 .
Before defining code obfuscation we need to define the syntac-

tic and semantic similarities between two pieces of code.

Let C i = 〈 S i 1 , · · · , S iN i 〉 , and C j = 〈 S j1 , · · · , S jN j 〉 be two pieces of

code. Assume C t
i

= trim (C i) where trim (.) is a function that re-

moves whitespace, blanks and comments from the code and its

statements and normalizes it. Thus, whitespace that cover an en-

tire line are removed, as well as whitespace within statements,
hitespace and blanks are trimmed so that the token sequence in

 i and C t
i

are the same.

efinition 2 (Syntactic Similarity) . Two pieces of code C i and C j
re structurally or syntactically similar if (i) they are both of the

ame length after trimming, and (ii) C i and C j are literally equiva-

ent with respect to their contents.

The syntactic similarity can be represented as a discrete func-

ion SynSim (C i , C j) , with a binary outcome, i.e., true (1) or false

0).

ynSim (C i , C j)

=

{
1 , if |C t

i
| = |C t

j
| and StringSim (S t

ik
, S t

jk
) > η, ∀ k = 1 · · · |C t

i
|

0 , otherwise
(1)

here StringSim (.,.) computes the literal similarity between the

wo given pieces of code. Two strings are exactly similar if they

ave the same characters in the same sequence. Two pieces of

ode are considered similar if ∀ k, k = 1 , · · · , |C t
i
| , all statements are

yntactically similar above a threshold. The superscript t means af-

er trimming. StringSim (.,.) is 1 if both the two pieces of code are

xactly similar. 0 indicates they are completely different from each

ther. η determines the level of similarity to be considered for this

elationship.

We draw a resemblance between code obfuscation and seman-

ic cloning of code. Two pieces of code are semantic clones if they

re functionally similar. Precisely defining the term semantic simi-

arity between two pieces of code is hard. In comparison to syntac-

ic similarity, which compares program texts and is relatively easy

o do, semantic similarity is difficult to identify as it deals with

he meaning or purpose of the codes, without regards to textual

imilarity.

The idea of semantic similarity is not easy to grasp because it

equires some level of understanding the meanings of programs,

hether formal or otherwise. The formal semantics of a program

r a piece of code can be described in several ways, the predom-

nant ones being denotational semantics, axiomatic semantics and

perational semantics (Gunter, 1992; Winskel, 1993). Denotational

emantics composes the meaning of a program or a fragment of

ode by composing it from the meaning (or denotation, a mathe-

atical expression or function) of its components in a bottom-up

ashion. Two pieces of code have the same meaning if their com-

osed denotations are the same. Axiomatic semantics defines the

eaning of a program or code fragment by first defining the mean-

ngs of individual commands by describing their effects on asser-

ions about variables that represent program states, and then writ-

ng logical statements with them. In this paradigm, two pieces of

ode that write an algorithm slightly differently but produce the

ame results are considered semantically equivalent, provided their

nitial assertions are the same. Operational or concrete semantics

oes not attach mathematical meanings to components within a

rogram or code fragment, but describes how the individual steps

f a piece of code or program takes place in a computer-based sys-

em on some abstract machine. No matter which approach is used

or describing formal semantics, the meaning of a code fragment

r program is obtained from the meanings ascribed to the indi-

idual components. To obtain the semantics of a code fragment or

rogram, it is initially parsed into syntactic or structural compo-

ents, and for each syntactic component, its corresponding mean-

ng is obtained, and finally the meaning of the piece of code is

ut together from these components, following appropriate rules.

hus, we could say two pieces of code C i and C j are semantically

imilar if

emSim (C i , C j) = SemSim

∗(� C i � , � C j �) > ϕ, (2)

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 407

w

t

f

w

b

p

d

p

o

c

w

t

D

C

s

t

w

D

o

s

m

c

O

E

E

o

3

a

a

i

p

fi

i

T

t

o

I

o

p

a

(

d

t

u

i

t

r

d

T

d

I

p

t

c

n

s

p

B

o

f

I

a

p

g

e

f

b

I

n

S

C

t

A

i

o

u

e

H

m

c

c

a

o

e

t

a

p

c

b

l

i

r

p

R

a

w

l

a

f

d

a

a

(

p

t

P

r

a

r

m

d

r

i

1 https://www.guardsquare.com/en/proguard .
here SemSim

∗(.,.) is a formal measure of semantic similarity be-

ween the two pieces of code. � C i � is the formal semantics of code

ragment C i computed following a formal approach. In this paper,

e will not delve deeper into how � C i � , � C j � or, SemSim

∗(.,.) may

e computed exactly following semantic theory. In practice, we ap-

roximate the computation of SemSim (C i , C j) using other means as

iscussed in this paper. In other words, the primary focus in this

aper is discussing a way to compute an approximate computation

f SemSim

∗(.,.) using non-formal semantic means. Assuming, we

an provide a good computational approximation to SemSim

∗(.,.),

e can proceed to define semantic clones. We call this approxima-

ion SemSim

∗(.,.).

efinition 3 (Semantic Clone) . Code C i is a semantic clone of code

 j (or vice versa) if they are semantically similar without being

yntactically similar.

Abstract definition of obfuscated code can be obtained using

he notions of syntactic and semantic similarities in the following

ay.

efinition 4 (Code Obfuscation) . A code C j is obfuscated version

f another code C i if they exhibit similar functionality although the

tructurally they are different from each other. It is similar to se-

antic clone. In other words, detection of an obfuscated code pair

an be represented as a discrete function as follows.

b f uscated(C i , C j)

=

{
1 , if SemSim (C i , C j) > ϕ and SynSim (C i , C j) < ϕ;
0 , otherwise,

(3)

where SynSim (.,.) is the syntactic similarity function from

q. (1) and SemSim (.,.) is the semantic similarity function from

q. (2) , and ϕ is a user set threshold.

Several effective methods have been proposed for discovering

bfuscated code. A brief sketch of these methods is given below.

. Prior research

A significant amount of research has been performed in both

reas of code clone and obfuscation. A number of effective tools

nd computational methods have been developed to address the

ssues of code clone detection and detecting obfuscated code inde-

endently. We discuss prior research on clone detection methods

rst, followed by obfuscated code detection.

Komondoor and Horwitz (2001) use, for the first time, the

dea of Program Dependency Graphs (PDG) in clone detection.

hey use a slicing technique to find isomorphic PDG subgraphs

o detect Type-I to III clones. CCFinder (Kamiya, Kusumoto, & In-

ue, 2002) uses a suffix tree-matching algorithm to detect Type-

 and II code clones, and it is not effective in detecting Type-III

r IV clones. Deckard (Jiang, Misherghi, Su, & Glondu, 2007) com-

utes characteristic vectors and can detect re-ordered statements

nd noncontiguous clones but not semantically similar clones.

 Li, Lu, Myagmar, & Zhou, 2006) use a token-based technique to

etect code clones and clones related to bugs in large software sys-

ems. Their system, CP-Miner , searches for copy-pasted code blocks

sing frequent subsequence mining. NiCad (Roy & Cordy, 2008)

s a text-based hybrid clone detection technique, which can de-

ect up to Type-III clones. Hummel, Juergens, Heinemann, and Con-

adt (2010) use a hybrid and incremental index based technique to

etect clones and implement a tool called ConQAT . It detects only

ype-I and II clones. Yuan and Guo (2011) use a count matrix to

etect code clones. The method is limited to detecting only Type-I,

I, and III clones. Higo, Yasushi, Nishino, and Kusumoto (2011) pro-

ose a PDG-based incremental two-way slicing approach to de-
ect clones, called Scorpio. This approach detects non-contiguous

lones while other existing incremental detection approaches can-

ot detect non-contiguous clones. The approach also has faster

peed compared to other existing PDG based clone detection ap-

roaches. Yuan and Guo (2012) use a token-based approach called

oreas to detect clones. Boreas uses a novel counting method to

btain characteristic matrices that identify program segments ef-

ectively. Boreas is not able to detect code clones of Type-III and

V. Murakami, Hotta, Higo, Igaki, and Kusumoto (2012) develop

 token-based technique called FRISC which transforms every re-

eated instruction into a special form and uses a suffix array al-

orithm to detect clones. The authors performed experiments with

ight target software systems, and found that the precision with

olded repeated instructions is higher than the precision without

y 29.8%, but the recall decreases by 2.9%. Murakami, Hotta, Higo,

gaki, and Kusumoto (2013) develop another token-based tech-

ique, which detects Type-III clones (gapped clones) using the

mith–Waterman algorithm (Smith & Waterman, 1981), called

DSW. Because CDSW does not normalize all variables and iden-

ifiers, it cannot detect clones that have different variable names.

grawal and Yadav (2013) extend Boreas to detect clones by us-

ng a token-based approach to match clones with one variable

r a keyword and easily detect Type-I and Type-II clones; they

se a textual approach to detect Type-III clones. Since Agrawal

t al. ’s approach combines two approaches, it is a hybrid approach.

otta, Yang, Higo, and Kusumoto (2014) compare and evaluate

ethods for detection of coarse-grained and fine-grained unit-level

lones. They use a coarse-grained detector that detects block-level

lones from given source files. Their approach is much faster than

 fine-grained approach, since the authors use hash values of texts

f blocks. However, using a coarse-grained approach alone is not

nough because it does not have more detailed information about

he clones. A fine-grained approach must be used as a second stage

fter a coarse-grained approach. Sheneamer and Kalita (2015) pro-

ose a hybrid clone detection technique to detect only syntactic

lones. SourcererCC (Saini, Sajnani, Kim, & Lopes, 2016) is a token-

ased syntactic and semantic clone detection method to achieve

arge-scale detection.

Automatic analysis of malware by detecting obfuscated code

s an active research area. A number of approaches have been

eported in the literature. Likarish, Jung, and Jo (2009) pro-

ose a method for JavaScript obfuscated code detection.

ieck, Trinius, Willems, and Holz (2011) adopted a semi-supervised

pproach to detect obfuscated code. Obfuscated code fragments

ith similar behavior are grouped using clustering and finally

abeled the groups. Next, unknown malware are classified using

lready labeled groups. Wang, Cai, and Wei (2016) use deep

eatures extracted by Stacked Denoising Autoencoders (SdA) for

etection of obfuscated code. Results are promising although SdAs

re slow in training. O’kane, Sezer, and McLaughlin (2016) present

 method using an optimal set of operational assembly codes

opcodes) from (Ragkhitwetsagul, Krinke, & Clark, 2016) who

erform pervasive modifications of source code using the ARTIFICE

ool (Schulze & Meyer, 2013) and bytecode obfuscation using the

ro-Guard tool. 1 Pro-Guard optimizes Java bytecode and uses

everse engineering by obfuscating the names of classes, fields

nd methods. The modification includes changes in layout and

enaming of identifiers, changes that affect the code globally. Local

odification of code is also performed. They use compilation and

ecompilation for transformation (obfuscation) and normalization,

espectively.

Despite there being a number of tools and methods for detect-

ng code obfuscation, the effectiveness is unclear. The reason is

https://www.guardsquare.com/en/proguard

408 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

a

c

c

t

c

d

l

b

l

f

w

4

m

t

s

f

t

b

t

p

e

f

i

m

p

c

l

g

b

c

B

s

a

c

g

e

q

c

c

w

o

s

s

u

o

b

s

r

s

p

m

t
that they analyze the structure of the code and pay scant impor-

tance to the semantics or meaning of the code. As a result, struc-

tural variations of the code remain undetectable using the above

methods. Because of the resemblance of the problem to semantic

code clone detection, we model it as a code clone detection prob-

lem.

Our current study is restricted to Java language code only. This

is because, for almost 25 years, Java is a top programming language

(Krill, 14.04.2015) in terms of Tiobe’s index. It gains further popu-

larity due to recent advances in Android based applications. Se-

mantic similarity remains challenging to detect for any program-

ming languages and often used by the attackers to create obfus-

cated codes. It has been noticed that some attackers clone the code

from legitimate Android apps and pack or assemble the code with

modifications after reverse-engineering. Some studies even focus-

ing on detecting mobile app clones by analyzing bytecodes or op-

codes (Chen, Alalfi, Dean, & Zou, 2015; Zhou & Jiang, 2012). Our

intention is to show that lower level code features derived from

bytecodes (or opcodes for other languages) along with source code

features are higher effective in detecting clone or obfuscated code.

Extraction of bytecodes is another potential reason for selecting

Java for our study. We believe that certain aspect of semantics can

be felicitously captured by bytecode when used with source codes.

However, our current framework can easily be extended to other

programming platforms.

We propose a single detection framework for both semantic

Java code clones and obfuscated Java code using machine learning.

4. An integrated detection framework

A straightforward approach to determine if two fragments of

code are semantically similar without necessarily being syntacti-

cally similar may proceed as follows: trim and normalize the two

fragments as discussed earlier, obtain the formal semantics of the

two using a method alluded to earlier, and compare the formal

semantic representations using Eq. (2) . However, tools to obtain

formal semantics are not readily available. In addition, formal se-

mantic representations are strings themselves, requiring additional

string comparisons. It is also unclear that formal semantic rep-

resentations will add substantially to efficient and effective code

clone or obfuscated code detection. Thus, it may be appropriate to

investigate if other approaches may work well in detecting if two

code fragments are semantically similar with each other, and addi-

tionally if they are obfuscated.

Code clone or obfuscated code detection has been treated as

a pairwise similarity analysis problem, where two pieces of code

are semantic clones or obfuscated if a given piece of code is se-

mantically similar to the given reference code. However, machine

learning usually considers individual samples for training and pre-

dicts class labels. Instead of comparing the structural and mean-

ing representations (which may be long and/or difficult-to-obtain

strings themselves) directly, to compare if two code fragments are

syntactically or semantically similar, we can extract relevant char-

acteristics of the code fragments by looking at selected portions of

them or other associated structures; such characteristics are usu-

ally called features in the machine learning literature. To apply ma-

chine learning to pairwise clone detection, we use features of both

the reference and target code fragments.

Definition 5 (Pairwise Learning) . Given a set of N pairs of train-

ing samples, each sample (a pair of code fragments) labeled with a

clone type or agreement about obfuscated or non-obfuscated codes

depending on their mutual similarity, a classification model can act

as a mapping function f : X → Y , where X is an unknown pair of

code fragments and Y is the possible clone type (or, obfuscated

code) predicted by the model. Training samples are represented
s feature vectors, f eatures (〈C i , C j 〉) = 〈 f 1 , f 2 , · · · , f M

, D k 〉 of size M ,

reated by combining the features of two different pieces of codes

(C i , C j) and a binary decision variable or class, D k associated with

(C i , C j) , forming a training sample matrix of size N × (M + 1) .

The similarity between two code fragments is measured by

omputing similarity between the two feature based represen-

ations. The relevant features for a pair of code fragments can

ome from many sources. One such source is bytecode Depen-

ency Graph (BDG) representation. Java bytecode representation is

ess ambiguous than high-level source code. In our work, we use

roadly two categories of code fragments features, bytecode or low

evel features; and source code or high level features. Examples of

eatures we use in our work are given below.

• Low Level Features: Bytecode (BC) features and Bytecode De-

pendency Graph (BDG) features.
• High Level Features: Traditional features, Abstract Syntax Tree

(AST) features, and Program Dependency Graph (PDG) features.

Next, we discuss in detail about various code fragment features

e use for semantic clone or obfuscated code detection.

.1. Java bytecode: low level features

Java source programs are compiled into a portable binary for-

at called bytecode. The bytecode is an intermediate program be-

ween Java source code and machine code. The Java bytecode is a

equence of instructions for the virtual machine to execute basic

unctionalities such as conditions and loops. Each bytecode con-

ains one or more opcodes. The Java Virtual Machine takes the

ytecode and converts it into machine code. When the Java Vir-

ual Machine (JVM) loads a class file, it is executed by an inter-

reter. This file contains a stream of bytecodes instructions for

ach method in the class. Bytecode is a low-level representation

or Java programs and hence is likely to be effective for represent-

ng the semantics of a program.

Although we work with Java code only, we can generalize our

ethod to convert code in any language into binary code and ap-

ropriate intermediate languages whenever possible to detect code

lones or obfuscations. For example, Microsoft .NET programming

anguages can be converted into the Microsoft Intermediate Lan-

uage (MSIL). We attempt to represent the meaning of a program

y extracting interdependency relationships among different byte-

ode constructs. We represent such dependency as a graph called

ytecode Dependency Graph (BDG). An illustration of the BDG con-

truction scheme is depicted in Fig. 1 . BDGs represent both data

nd control dependencies for each operation in the bytecode. We

reate a BDG from the bytecode and extract features from the

raph. The BDG features are the semantic or meaning features. We

xtract control dependency features by reading the .class file se-

uentially and by tracking down all the instructions that may cause

onditional or unconditional branching of the control flow of the

ode sequence. We consider three types of control instructions,

hich are listed in the Table 1 . We find the frequencies of vari-

us data and control dependency relationships among different in-

tructions. We consider a total of 23 constructs and 85 relation-

hips between them and use them as our BDG.

We feel that similarity between two blocks of bytecode can be

sed as a measure of similarity between the semantics of a pair

f original source code fragments. We pre-process the source code

y trimming and normalizing as discussed earlier. We first extract

yntactic features from the program bytecode. Frequency of occur-

ence of various bytecode instructions such as load, store, add , and

ub , are used as features, what we call Bytecode features. When

arsing the .class file, we ignore certain bytecode entities like state-

ent numbers. Such low information entities are unlikely to con-

ribute to the meaning of a program and hence we remove them.

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 409

Fig. 1. A BDG showing control and data dependency among the instructions.

Table 1

Bytecode conditional satatements.

Control Instructions

Unconditional branch goto, goto_w
Conditional branch ifeq, iflt, ifle, ifgt, ifge,

ifnull, ifnonnull, if_icmpeq,
if_icmpgt, if_icmpge, if_acmpeq,
if_icmplt, if_icmple, if_icmpne,
if_acmpne

Compound cond. branch tableswitch, lookupswitch
Comparisons lcmp, fcmpg, fcmpl, dcmpg, dcmpl

Table 2

Categorization of bytecode instructions.

Category Instructions

Load aload, dload, fload, iload, lload
Store astore, dstore, fstore, istore, lstore
const aconst, iconst, dconst, fconst, lconst
Arithmetic iadd, dadd, fadd, ladd, isub, dsub,

fsub, lsub, imul, dmul, fmul, lmul, idiv,
ddiv, fdiv, ldiv, irem, drem, frem, lrem

Type conversion i2l, i2f, i2d, l2f, l2d, f2i,
f2l, f2d, d2i, d2l, d2f, i2b, i2c, i2s

W

c

g

i

f

c

t

T

b

e

q

t

t

t

s

Algorithm 1 Bytecode & BDG Feature Extraction

1: INPUT : C // Java Source Code

2: OUTPUT : F = { f BC 1
, · · · , f BC N

, f BDG 1
, · · · , f BDG M

} // Set of N BC

and M BDG features

3: Steps :

4: L BC = { B 1 · · · B N } // List of N BC attributes

5: L BDG = { D 1 · · · D M

} // List of M BDG attributes

6: T ← javac (C) //invoking Javac compiler

7: V ← Tokenize (T) //Read line by line the .class file and store

the stream sequence of instructions in a vector V
// Counting frequency of Bytecode instructions features

8: for i = 1 · · · |L BC | do

9: for j = 1 · · · |V| do

10: if MatchToken (B i , V j) then

11: f BC i
= f BC i

+ 1

12: end if

13: end for

14: F = F ∪ f BC i
15: end for

//Counting frequency of BDG features

16: for i = 1 · · · |L BDG | do

17: f BDG i
← DependencyFreq (D i , V)

18: F = F ∪ f BDG i
19: end for

20: return F

r

B

o

f

4

a

f

o
e classify the instructions into several categories for our ease of

omputing the features and dependency relationships. The cate-

ories are listed in Table 2 .

We extract both bytecode (BC) and BDG features from the BDG

tself. Algorithm 1 shows the steps in extracting such features

rom a BDG. It takes Java code as input and generates the byte-

ode as a .class file using the Javac compiler. L BC and L BDG are

he vectors of pre-specified BC and BDG attributes, respectively.

he algorithm counts the frequencies of the target attributes for

oth BC and BDG. In case of BC features, MatchToken matches

ach pre-specified BC attribute and increases the count of the fre-

uency of the target feature in the L BC vector. To extract BDG fea-

ures, the method DependencyFreq checks for all possible con-

rol dependency relationships that persist in the bytecode. Similar

o MatchToken , it increases the count if the specified relation-

hip, given as BDG attribute is encountered during each iteration. It
eturns the frequency vector and stores it as L BDG i
. Frequencies of

C and BDG attributes are finally stored into a vector F as features

f a given Java program. Please refer to Supplementary materials

or the details of the features we extract as BC and BDG features.

.2. Source code features

Besides using low level bytecode for capturing the semantics of

 Java code snippet we also extract semantic as well as syntactic

eatures directly from the high level source code. The combination

f both low and high label features may represent the semantics

410 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

Fig. 2. Example of AST derived from code block. MD: MethodDeclaration VDS: Vari-

ableDeclarationStatement, CE: ConditionalExperssion, E: Expression .

Fig. 3. Program dependency graph showing control and data dependency among

the statements.

f

o

s

T

k

a

2

4

t

�

w

t

f

B

fi

A

l

n

f

�

w

�

f

t

and syntax more accurately, hence, helping in better matching of

two target programs.

Syntactic similarity between two code blocks is also likely to

impact upon the similarity in meanings, and hence we also parse

the code fragments into their structural components in terms of

Abstract Syntax Tree (AST) (Baxter, Yahin, Moura, Sant’Anna, & Bier,

1998). Each node of the tree represents a programming construct

occurring in the given source code. Leaf nodes of the tree contain

variables. Unlike a majority of published clone detection methods

that compare the two syntactic trees directly, we extract certain

characteristics or features from the ASTs. Fig. 2 shows an example

AST created by the AST Generator software 2 we use. We traverse

the AST in post-order manner and extract only non-leaf nodes con-

taining programming constructs such as Variable Declaration State-

ments (VDS), While Statements, Cast Expressions, Class Instances,

and Method Invocations. We represent the frequencies of these

programming constructs as AST features in a vector.

We also extract source code control dependency features from

Program Control Dependency Graph (PDG) (Ferrante, Ottenstein,

& Warren, 1987). The PDG features are a type of semantic fea-

tures. PDGs make explicit both the data and control dependence

for each operation in a program. Data dependencies represent the

relevant data flow relationships within a program. Control depen-

dencies represent the essential control flow relationships. A sample

PDG derived from a code fragment is given in Fig. 3 . Edges rep-

resent the order of execution of program nodes. Nodes represent

the lines where the corresponding elements are located in the pro-

gram. Horwitz, Prins, and Reps (1988) show that PDGs can be used

as “adequate” representations of programs and prove that if the

PDGs of two graphs are isomorphic, they are strongly equivalent,

i.e., they are “programs with the same behavior.” We extract fea-

tures, instead of directly matching the two PDG graphs for clone

detection. Examples of such features are the number of Assign-

ments that come after Declarations, obtained by counting the oc-

currence of the assignments which are dependent on declarations;

the number of Declarations coming after Control (e.g. i < count,
2 http://www.eclipse.org/jdt/ .

c

t

b

or, while, if, switch etc.), the numbers of times nested iterations

ccur; the numbers of times nested selections occur, and so on.

In addition to all of the features discussed above, we extract ba-

ic source code characteristics, which we call Traditional Features.

hey include the number of Lines of Code (LOC), the number of

eywords, variables, assignments, conditional statements and iter-

tion statements (Kodhai, Kanmani, Kamatchi, Radhika, & Saranya,

010) used in a given piece of source code.

.3. Fusion of code features

We combine feature vectors (Eq. (4)) extracted from a pair of

arget and reference code codes to create the training dataset.

 C n i � ≈ 〈 f l i 1 , · · · f l ik b | f l i 1 , · · · f l ik d | f h i 1 , · · · f h ik t
| f h i 1 , · · · f h ik a

| f h i 1 , · · · f h ik p
〉

(4)

In this equation, we denote the different categories of features

ith different superscripts: l for low level or byte code related fea-

ures, and h for high level source code features. We denote the dif-

erent types of features with different superscripts: b : bytecode, d :

DG, t : traditional, a : AST and p : PDG. Features are separated into

ve different groups with vertical lines, for clear separation.

We fuse the sequence of features from the two different codes.

lthough there are five type of features covering both low and high

evel features in the description of a code fragment, to simplify the

otation, we can rewrite Eq. (4) , without distinguishing among the

eature types, as:

 C n i � ≈ f eatures (C i) = 〈 f i 1 , · · · f ik 〉 . (5)

here k = k b + k d + k t + k a + k p . Similarly,

 C n j � ≈ f eatures (C j) = 〈 f j1 , · · · f jk 〉 . (6)

We use known pairs of cloned or obfuscated code fragments for

eature extraction and labeling of the class of the feature vector as

rue clone or obfuscation type.

Given two code fragments C i and C j , and the corresponding

lass label D for the code fragments, the combined feature vector,

f eatures (〈C i , C j 〉) can now be represented as a fused feature vec-

or. We fuse the two vectors in three different ways as discussed

elow.

http://www.eclipse.org/jdt/

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 411

S

2

T

p

f

t

f

u

4

f

i

a

B

a

(

S

w

C

J

t

b

c

Fig. 4. Share of categories of features used.

4

n

c

u

w

f

i

t

e

4

c

l

t

o

s

c

b

i

t

T

C

Linear combination: We concatenate the two feature vectors.

imple concatenation gives rise to a fused feature vector of size

 k . Linear combination looks like as follows:

f eatures (〈C i , C j 〉) = 〈 f i 1 , · · · , f ik , f j1 · · · , f jk , D 〉 . (7)

A linear combination results in double the number of features.

o reduce the size, we may use two other simple combination ap-

roaches.

Multiplicative combination: Here we combine two different

eature sequences by multiplying the corresponding feature values.

f eatures (〈C i , C j 〉) = 〈 f i 1 ∗ f j1 , · · · , f ik ∗ f jk , D 〉 , (8)

Distance combination: Nearness, the opposite of distance, is

he most obvious way to calculate the similarity between two code

eatures. We use the absolute difference between two feature val-

es to fuse the features of a pair of code fragments.

f eatures (〈C i , C j 〉) = 〈| f i 1 − f j1 | , · · · , | f ik − f jk | , D 〉 . (9)

.4. Code similarity as a feature

We use the text similarity score between a pair of target code

ragments as one of the features as well. We compute text sim-

larity between two target Java source code fragments C i and C j ,
nd also the text similarity between their corresponding bytecodes

 i and B j , respectively. We tokenize each source code fragment

nd count frequencies of the tokens. We calculate cosine similarity

 Candan & Sapino, 2010) using the frequency vectors as follows:

 1 (C i , C j) = cos (θ) =

∑ n
i, j c i × c j √ ∑ n

i c 2
i

×
√ ∑ n

j c
2
j

(10)

here, c i and c j are the components of the frequency vectors for

 i and C j respectively. Similarly, we calculate the similarity of two

ava bytecode fragments, S 2 (B i , B j) using the above equation.

Finally, a feature vector for a given pair of code fragments for

raining can be represented as follows.

f eatures (〈C i , C j 〉) = 〈 f i j1 , · · · , f i jk , S 1 (C i , C j) , S 2 (B i , B j) , D 〉 . (11)

We use a total of 258 features to represent a pair of code

locks. The distribution of features categories we use to train a

lassification model is shown in Fig. 4 .
able 3

omputational costs of each sub-functions.

Function Complexity

Extract Java method blocks It can be extracted in single scan of the whole

program.

Preprocessing (trimming and

normalization)

Similarly, it can be normalized and trimmed i

Extract traditional features (per block) For single scan of the block with n lines costs

Generate AST Let h be the height of the AST. Let N > 0 be th

node can have. Each node can have at most

Extract AST features Considering worst case scenario of skewed tre

time for matching each tokens for frequency

comes out to be O (V) + O (N ∗ V) . In case w

comes out to be O (N 2) in worst case.

Generate PDG O (N)

Extract PDG features DependencyFreq (P i , N), searches entire vector o

If number PDG relations are same with num

Extract bytecode (BC) features For N number of tokens in ByteCode files it ta

hashing.

Generate BDG Similar to AST it costs O (N)

Extract BDG features Extraction of BDG features works similar way

Linear feature fusion O (2 N) ≈ O (N), for N features.

Multiplicative feature fusion O (N)

Distance feature fusion O (N)

Code similarity O (N)
.5. Complexity analysis

We divide our overall tasks of the framework into three parts

amely (i) Feature Extraction, (ii) Training and (iii) Testing. The

ost of training and testing is model dependent. Since, we are

sing state-of-the-art models for the purpose, we avoid them

hile calculating computational complexity. We sub-divide our

eature extraction phase into several sub-phases. Phases are listed

n Table 3 with their asymptotic cost.

Keeping the dominating factors, out of all the cost and ignoring

he rest lower cost terms, the overall complexity for the feature

xtraction process will be O (N

3) in worst case.

.6. A new code obfuscation and clone detection scheme

We use our machine learning framework both for detecting

ode clones as well as obfuscated code. Like any other machine

earning framework, our scheme also has two phases, training and

esting. In training, we use labeled pairs of cloned code or known

bfuscated code from a given corpus. We perform pre-processing

teps, including trimming and normalization. Next, we compile the

ode blocks to Java bytecode classes or files. Then, we generate

oth low level and high level features from the given pair of code

n terms of BC, BDG, AST and PDG features and fuse feature vec-

ors of two target code blocks using one of Eqs. (7) , (8) or (9).
 file with a cost O (L), where L is the total number of statements in the entire

n a single scan of the block costing O (l), for l statements per block.

 O (n). So for M blocks it will be O (M

∗n) ≈ O (n 2).

e number of tokens in the tree. Let m be the maximum number of children a

 m − 1 keys. The complexity comes out to be O (N) (Kelly, 2014)

e, post-order traversal of AST with V tokens or nodes needs , O (V) time. And

, it needs O (N ∗V), where N is the number of possible AST features. So total

here all the tokens are matching with all AST features, it gives to O (N 2) which

f size N for a relation P i , costing O (N 2). For each P i in PDG, it will take O (P ∗N 2).

bers of actual relations it will take O (N 3).

kes O (N) to count the frequency of each BC feature frequency, when we use

like the way we extract PDG features costing O (N 3).

412 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

Fig. 5. Workflow of the proposed dual detection framework.

Fig. 6. Java obfuscated dataset generation steps.

v

m

5

f

a

r

J

t

f

a

t

e

p

t

m
We compute similarity between the pair of code blocks using co-

sine similarity and append them into the fused feature vector. We

label the feature vector with a class label based on clone type or

whether it is obfuscated code or not. We use a binary classifier for

detection of semantic clones or possible obfuscated code. Accord-

ingly, we mark it as Y on N to indicate semantic clone or obfus-

cated code.

All the above steps are iterated for all possible pairs of code

to create a training dataset for the classification model. To identify

possible clone or obfuscation in a pair of unlabeled code blocks,

we perform the same sequence of steps to create a fused feature

vector of the two given blocks and pass it through the classifier for

prediction of the possible clone type or to determine if one is an

obfuscated version of the other. Fig. 5 demonstrates the work-flow

of our approach. We also explore the use of a classifier ensem-

ble using the majority voting approach (Dietterich, 20 0 0) with the

hope of achieving better detection rate. It is considered a simple,

stable and effective scheme and usually produces more accurate

results than a single model. It is known to reduce model bias and
 w
ariance (Kim, Min, & Han, 2006; Tsai & Hsiao, 2010) to produce

ore accurate solutions than a single model.

. Experimental evaluation

We must note that all method blocks of code must be success-

ully compiled by the compiler suite for our approach to work. If

 method block cannot be successfully compiled, it must be cor-

ected manually for further processing. Our approach relies on the

avac compiler. We evaluate the performance of our proposed de-

ection framework in the light of various publicly available ob-

uscated code and clone datasets. We compare its performance

gainst state-of-the-art obfuscated code detectors and clone detec-

ors. We report them in two different subsections below. In our

xperiments, we use only examples of Java source code as a cor-

us for training and testing. However, this model is general in na-

ure and can be extended easily to any other high level program-

ing language. Our primary goal is to improve semantic clone as

ell as obfuscated code detection accuracy. We use an ensemble of

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 413

Fig. 7. Performance of detection framework on clone datasets with different features combinations.

Table 4

Brief description of Java obfuscated datasets.

Dataset Paired codes Original Obfuscated

ObsCode 2500 500 20 0 0

PacMan 8464 7968 496

Algorithms 2230 20 0 0 230

s

f

t

p

p

c

s

g

s

a

w

c

a

w

a

f

t

Fig. 8. Effectiveness of the framework on detecting obfuscated code using feature

fusion.

5

c

w

t

c

e

W

a

p

elected classifiers and compare the effectiveness of the proposed

ramework with the state-of-the-art clone and obfuscated code de-

ection methods. We first describe the collection and generation

rocedure for datasets for different experiments to evaluate the

erformance of our proposed scheme in detecting both obfuscated

ode and code clones. We developed a clone labeling scheme using

upervised and unsupervised approach with the help of Java pro-

ramming experts. All our clone datasets are labeled using above

chemes. The detail scheme is reported in Sheneamer, Hazazi, Roy,

nd Kalita (2017) .

We evaluate the performance of our proposed detection frame-

ork in the light of various publicly available obfuscated code and

lone datasets. We compare its performance against state-of-the-

rt obfuscated code detectors and clone detectors

Next, we report experimental results produced by our scheme

ith varying combination of feature fusion techniques discussed

bove. We also train our framework by selecting relevant features

rom the feature vectors and report the same. Finally, we compare

he performance of our scheme with the state-of-the-art detectors.
Table 5

Brief description of our Java code clone corpus.

Dataset Paired codes Type-I and

Suple 152 30

netbeans-javadoc 452 54

eclispe-ant 787 118

EIRC 870 32

Sample_j2sdk1.4.0-javax-swing 800 200

Sample_eclipse-jdtcore 800 200
.1. Assessment design

We execute the framework in a similar way for both obfus-

ated code and code clone detection. First, we train the framework

ith appropriate samples. To prepare training samples we ex-

ract method blocks from known obfuscated code samples or code

lones. We extract low level and high level features as discussed

arlier and fuse them using the scheme discussed in Section 4.3 .

e then train a group of classifiers for use as an ensemble to

chieve better classification accuracy. We follow the same steps for

rediction of unknown samples.
 II Type-III Type-I V False Agreement (%)

59 25 38 75

146 39 213 62

392 66 211 60

394 146 298 76

282 118 200 76

200 169 231 69

414 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

Fig. 9. Learning curve: Performance of ensemble classifier on clone dataset with varying numbers of features.

Fig. 10. Performance of ensemble approach on clone dataset after feature selection

using MDI .

Fig. 11. Effectiveness of ensemble classifier on detecting obfuscated codes after fea-

ture selection using MDI .

5

f

t

f

t

c

t

b

s

p

t

W

n

(

(

c

t

t

g

t

F

t

b

a

o

t

5

f

T

p

m

n
.1.1. Obfuscated code dataset

We generate examples of obfuscated code using available ob-

uscation tools. We use five Java classes namely InfixConverter, Sqr-

Algoritm, Hanoi, EightQueens , and MagicSquare to generate Java ob-

uscated code and name the entire set of classes ObsCode. All of

hese classes are less than 200 lines of code. Each class of Java

ode is obfuscated using Artifice (Schulze & Meyer, 2013). Then,

he original and obfuscated files are compiled to bytecode. Both

yte code files are obfuscated further using ProGuard to create

tronger obfuscation. After that, all four bytecode files are decom-

iled using either Krakatau

3 or Procyon

4 giving back eight addi-

ional obfuscated source code files (Ragkhitwetsagul et al., 2016).

e generate nine substantially modified versions of each origi-

al source code, resulting in a total 50 of files for the dataset

 Ragkhitwetsagul et al., 2016).

We select the PacMan game 5 as our second subject system

 Schulze & Meyer, 2013). It contains of 21 files and 2400 lines of

ode. The classes are further transformed using renaming, contrac-

ion, expansion, loop transformations (Schulze & Meyer, 2013).

We also select supplementary source programs available in the

extbook called Algorithms 6 containing 149 Java source files and

enerate the obfuscated code. We generate obfuscation files from

he above source files content using the approach illustrated in

ig. 6 . Each class of Java code is obfuscated using ProGuard. Then,

he original and obfuscated files are compiled to bytecode. Both

ytecode files are obfuscated once again using ProGuard. After that,

ll bytecode files are decompiled using Java decompiler giving back

bfuscated source code files. We obtain 785 Java bytecode files for

he dataset. A summary of the datasets is given in Table 4 .

.1.2. Clone dataset

We use six Java code clone and three obfuscated code datasets

or training and testing. Details of the datasets are given in

ables 4 and 5 . A majority of existing clone datasets used in prior

apers are incomplete in nature. They usually avoid labeling se-

antic code clones. The publicly available datasets are eclipse-ant,

etbeans-javadoc, j2sdk14.0-javax-swing, eclipse-jdtcore, EIRC and Su-
3 https://bitbucket.org/mstrobel/procyon/wiki/Java .
4 https://github.com/Storyyeller/Krakatau .
5 https://code.google.com/p/pacman-rkant/ .
6 http://algs4.cs.princeton.edu/home/ .

https://bitbucket.org/mstrobel/procyon/wiki/Java
https://github.com/Storyyeller/Krakatau
https://code.google.com/p/pacman-rkant/
http://algs4.cs.princeton.edu/home/

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 415

Fig. 12. Effectiveness of various obfuscated code detection tools on ObsCode dataset.

p

o

T

f

o

g

l

a

a

κ

w

i

a

d

d

i

t

2

E

t

le . The original datasets contain very small numbers of instances

f specific types, making them difficult to use for machine learning.

o overcome this situation we extract additional method blocks

rom the original source programs and label them with the help

f a group of expert Java programmers with Masters and PhD de-

rees in Computer Science. Then, we compute probability of re-

iability between observers or raters to as certain that labels are

cceptable. We compute Kappa statistic (Viera, Garrett et al., 2005)

greement between every two observers’ decisions using Eq. (12) :

=

p o − p e

1 − p e
, (12)
here, p o is the relative observed agreement among raters and p e
s the hypothetical probability of chance agreement.

We finally obtain the average probability of agreement between

ll the raters for each dataset. A brief summary of the extended

atasets is given in Table 5 . In the table, the second column in-

icates how many paired-blocks we extracted to expand the ex-

sting dataset. Agreement refers to the probability of reliability be-

ween observers or raters. We compute Kappa statistic (Viera et al.,

005) agreement between every two observers’ decisions using

q. (12) and take the average probability of agreement between all

he raters and report the same in the table:

416 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

Fig. 13. Tool performance comparison on the PacMan data in terms of accuracy, which original program compared to obfuscated programs for each clone detection technique.

The obfuscation are abbreviated as follows: C: contraction, E: expansion, L: loop transformation, R: renaming (Schulze & Meyer, 2013).

5

n

f

i

e

b

c

w

f

t

(

v

p

m

e

b

s

c

o

T

r

c

5

a

t

5

(

s

c

d

s

t
5.2. Ensemble classification model

We train and test our model using an ensemble approach us-

ing majority voting (Dietterich, 20 0 0) among ten classifiers. We

include classification decision from Naïve Bayes (John & Lan-

gley, 1995), LibLinear SVM (Fan, Chang, Hsieh, Wang, & Lin,

2008), Instance Based Learner (IBK) (Aha, Kibler, & Albert, 1991),

Bagging (Breiman, 1996), Logit Boost (Friedman, Hastie, Tibshi-

rani et al., 20 0 0), Random Committee (Witten & Frank, 2005), Ran-

dom Subspace (Ho, 1998), Rotation Forest (Rodriguez, Kuncheva,

& Alonso, 2006), J48 (Salzberg, 1994), and Random Forest

(Breiman, 2001) classifiers and ensemble them based on majority

decision to obtain the final class label.

5.3. Experimental results

We generate extensive results to assess the robustness of our

proposed model in detecting semantic clones and obfuscated code.

We experiment with a varying number of features and with differ-

ent feature fusions schemes to show that our features are able to

achieve a high detection accuracy.

5.3.1. Experimenting with varying feature fusion methods

We assess the importance of combining Traditional, AST, PDG,

Bytecode and BDG features and report the results produced by the

proposed framework on both clone and obfuscated datasets in Figs.

7 and 8 , respectively. Results produced by the ensemble classifier

with varying feature fusion methods, show that the performance of

the ensemble classifier improves substantially as we combine both

syntactic and semantic features to detect clones. Interestingly, the

performance of the classifier using semantic features is consistent

irrespective of feature types and fusion methods. We also observe

that distance and multiplicative combinations produce better re-

sults than linear combination for all sizes of data.

In case of obfuscated datasets, the results reported in

Fig. 8 show that we achieve 100% accuracy for the first two

datasets irrespective of the feature fusion method used. However,

for the Algorithm dataset, linear fusion gives better results in com-

parison to other methods.
.3.2. Experimenting with selected features

We perform two different kinds of experiments with varying

umbers of features, selecting equal numbers of features from each

eature type (Traditional, AST and PDG, Bytecode, and BDG) and us-

ng a feature selection method (Fig. 10). The intention behind such

xperiments is to show the significance of our features in achieving

etter accuracy, and that it is not by chance. The growing learning

urve (Fig. 9) clearly indicates that the detection accuracy improves

ith the increase in the numbers of features.

In another experiment, instead of using selection of features

rom the various categories we use a Random Forests based fea-

ure selection algorithm, namely Mean Decrease Impurity (MDI)

 Louppe, Wehenkel, Sutera, & Geurts, 2013) for selecting feature

ectors after applying different fusion methods. Random Forests

rovide an easy way to assess importance of features based on

ajority decision using an ensemble of randomized trees. For each

xperiment, we use different numbers of the feature sets ranked

y the feature selection algorithm. Figs. 10 and 11 report the re-

ults on clone and obfuscated datasets. Similar to the learning

urve based on randomly selected feature sets, growth in the size

f selected feature sets shows a growing trend in the performance.

his further establishes the fact that our features are crucial in de-

iving high accuracy detection rates, especially in detecting obfus-

ated code.

.4. Performance comparison

We compare the performance of our method with state-of-the-

rt clone detectors and contemporary obfuscated code detection

ools.

.4.1. Performance of obfuscated code detectors

We use the previously reported performance scores

 Ragkhitwetsagul et al., 2016) in terms of Precision, Recall and F1-

core values for comparison of performance of different obfuscated

ode detectors. We compare our approach with these obfuscated

etection approaches: JPLAG, CloneDigger, and Scorpio. We con-

ider the maximum value of the range reported by other authors

o give benefit of the doubt to our competitors. Fig. 12 shows a

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 417

Fig. 14. Prediction effectiveness of proposed framework in comparison to state-of-the-art clone detectors in terms of F -score.

c

b

i

i

h

b

a

c

d

e

o

r

w

A

a

p

t

o

b

P

r

5

t

e

E

c

p

s

a

i

p

o
omparison of our results with different obfuscated code detectors

ased on recall, precision and F1-Score on the ObsCode dataset. It

s evident that our method performs better than all other methods

n detecting obfuscated code. Our method is the winner with the

ighest F1-Score (100%) in all cases of detecting obfuscated codes

ased on three different datasets, ObsCode, ObsCode ∗(karkatau) ,

nd ObsCode ∗ (procyon). ObsCode ∗(karkatau) , and ObsCode ∗ (pro-

yon) are the variation of our ObsCode dataset created using three

ifferent obfuscation tools, Artifice, ProGuard, and Decompilers.

In Fig. 13 , we also compare our method with three differ-

nt obfuscation code detection tools selecting each tool based

n the particular detection method they use. In terms of accu-

acy, our method is the best compared to other four methods,

hich are Text-based (JPLAG(v.2.2.1)), Token-based (JPLAG(v.2.2.1)),

ST-base (CloneDigger), and PDG-based (Scorpio). Our approach

chieves 100% accuracy in most of the cases. When we com-

are our method with other methods for all of obfuscations

ypes, viz, contraction, expansion, loop transformation, renaming,

c
ur model is the winner with highest accuracy (98.4%) followed

y Token-based(JPLAG(v.2.2.1)) (91.6%), Text-based (JPLAG(v.2.2.1)),

DG-based (Scorpio) (48.8%), and AST-based (CloneDigger) (38.5%),

espectively.

.4.2. Comparison of clone detectors

We compare the performance of our framework with con-

emporary clone detection methods, using reported results on

clipse-ant, netbeans-javadoc, j2sdk14.0-javax-swing, eclipse-jdtcore,

IRC and Suple datasets. We compare our approach with several

lone detection approaches: CloneDr, CLAN, LD, CCFinder, Dup, Du-

loc, Deckard, NICAD, CDSW, and Hybrid clone detection. Prior re-

earch reports (Hotta et al., 2014; Murakami et al., 2013) report

 range of F-scores for detecting Type I, Type II and III only. This

s because clone datasets available to them lacked Type IV exam-

les. Moreover, a majority of the detection methods are incapable

f detecting semantic clones. Hence, we conduct analysis of the

lone detectors for their effectiveness in detecting Type I, II and

418 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

Fig. 15. Effectiveness of the framework for detecting code clones when the training and test datasets are from different corpora.

Fig. 16. Performance of the proposed detection framework in detecting obfuscated codes for mix training and testing samples.

Fig. 17. Execution time requirements on different clone datasets.

o

e

t

u

t

a

s

o
III clones. We compare performance of the proposed framework

with the contemporary detectors with respect to their maximum

reported scores. Fig. 14 shows comparison of our results with the

state-of-the-art detectors in terms of F-score. Results clearly estab-

lish that our method is superior in detecting all type of clones.

Our primary goal is to improve clone detection accuracy for Type-

III and Type-IV clones using an ensemble approach using majority

voting (Dietterich, 20 0 0) among ten classifiers. We conduct 5 sets
f experiments of code clone detection. Each set contains 3 differ-

nt categories of pair instance features using the three composi-

ion functions. Models of the classifiers are produced and tested

sing cross-validation with 10 folds, where we ensure that the ra-

io between match and non-match classes is the same in each fold

nd the same as in the overall of each dataset. Results for only 5

ets of experiments are given in Fig. 7 . Fig. 7 shows the accuracy

f different code clone detectors based on feature pair instance

A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420 419

Fig. 18. Time taken by the proposed model for training and testing on different obfuscated dataset combinations.

v

f

f

i

j

e

t

5

t

e

t

e

i

t

c

f

a

o

f

e

M

3

i

s

t

w

5

c

b

p

w

F

t

o

p

t

l

n

6

n

l

c

p

t

c

7

t

t

A

i

n

f

l

a

t

c

p

l

t

o

i

p

f

m

S

f

R

A

A

B

B

B

ectors by the three composition functions. On average, the per-

ormance improves by 3.15% when syntactic features and semantic

eatures are added in terms of accuracy in netbeans-javadoc, 6.59%

n eclipse-ant, 11.49% in EIRC, 3.84% in Suple, 4.71% in j2sdk1.4.0-

avax-swing, and 2.46% in eclipse-jdtcore. This proves our hypoth-

sis that adding more complex features beyond those used tradi-

ionally is extremely helpful in code clone detection.

.5. Extended experiments

Ideally, a detection framework should work on other sample

hat are different from the samples used during training phase. To

valuate the clone detection capability of our framework in mix

raining and testing samples, we integrate j2sdk14.0-javaxswing and

clipse-jdtcore systems and use the integrated dataset as a train-

ng set for building the model and estimate the parameters of

he model during the learning phase. We then use a different and

ompletely new dataset for model evaluation. The accuracy of the

ramework in clone detection based on mixed samples is shown in

s in Fig. 15 .

Similarly, we mix training and testing samples from different

bfuscated datasets for detecting code obfuscation using three dif-

erent ways. 1) Combining obsCode and Algorithms dataset and

valuate using the PacMan dataset, 2) combined obsCode and Pac-

an dataset and evaluate using the Algorithms dataset and lastly,

) we combine PacMan and Algorithms dataset and evaluated us-

ng the ObsCode dataset. The results from combined datasets are

hown in Fig. 16 . In terms of accuracy, our obfuscation code detec-

ion model produces better results even when the model is built

ith a dataset and tested on another.

.6. Execution time performances

We measure the execution time of our approach on different

ode clones datasets. Fig. 17 shows the execution time obtained

y varying steps or task to detect clones in the dataset. Our ap-

roach can detect clones in a less than 1 s to a few seconds. Also,

e measure our approach on different obfuscated code datasets.

ig. 18 shows the execution time obtained by varying steps or tasks

o detect obfuscated code in the dataset. Our approach can detect

bfuscated code in about 31 s to about 2 min. Therefore, our ap-

roach can detect both clones and obfuscation of code in a short

ime. Our approach can scale to process millions of files with bil-

ion lines of code in a reasonable amount of time. This may prompt

ew techniques for large datasets clone detection to appear.
. Threat to validity

The use of the Javac compiler is limited to the compilation tech-

ique of Java platform. Our results might not be applicable to other

anguages that use some intermediate representation of the source

ode such as C# and C/C ++ . All the Java files have to be com-

iled into Java byte prior generating BDG and extracting its fea-

ures. Therefore, all Java files are required to have no errors before

ompiling to Java ByteCode and generating BDG.

. Conclusion

In general, the semantics of a program is difficult to charac-

erize, especially if the semantic representation is to be used for

asks such as detecting software clones and obfuscated programs.

 number of methods and software tools are available for detect-

ng code clones or obfuscated code. In this paper, we proposed a

ovel framework for detecting both Java code clones and Java ob-

uscated code. We captured the semantics of program codes using

ow and high level program features derived from Bytecode, AST

nd PDG. We performed an extensive set of experiments to show

hat our framework is able to detect both code clone and obfus-

ated code equally well. The detailed results we present in this pa-

er and in Supplementary Materials clearly establish the machine

earning approach we use with the carefully obtained features as

he current best method for simultaneously detecting all four types

f clones as well as obfuscated code. The current framework is lim-

ted to only Java code. Although we believe the ideas can be ap-

lied to other languages early. We are exploring ways to make the

ramework more general in nature, with an eye to its high com-

ercial importance.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.eswa.2017.12.040 .

eferences

grawal, A. , & Yadav, S. K. (2013). A hybrid-token and textual based approach to
find similar code segments. In 2013 fourth international conference on computing,

communications and networking technologies (ICCCNT) (pp. 1–4). IEEE .
ha, D. W. , Kibler, D. , & Albert, M. K. (1991). Instance-based learning algorithms.

Machine Learning, 6 (1), 37–66 .

axter, I. D. , Yahin, A. , Moura, L. , Sant’Anna, M. , & Bier, L. (1998). Clone detection
using abstract syntax trees. In International conference on software maintenance,

1998. Proceedings (pp. 368–377). IEEE .
reiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123–140 .

reiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32 .

https://doi.org/10.1016/j.eswa.2017.12.040
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0005

420 A. Sheneamer et al. / Expert Systems With Applications 97 (2018) 405–420

L

M

M

O

R

R

R

R

R

S

S

S

S

S

S

T

V

W

W

Y

Y

Z
Candan, K. S. , & Sapino, M. L. (2010). Data management for multimedia retrieval . Cam-
bridge University Press .

Chen, J. , Alalfi, M. H. , Dean, T. R. , & Zou, Y. (2015). Detecting android malware using
clone detection. Journal of Computer Science and Technology, 30 (5), 942–956 .

Christodorescu, M. , Jha, S. , Seshia, S. A. , Song, D. , & Bryant, R. E. (2005). Seman-
tics-aware malware detection. In 2005 IEEE symposium on security and privacy

(pp. 32–46). IEEE .
Collberg, C. S. , & Thomborson, C. (2002). Watermarking, tamper-proofing, and ob-

fuscation-tools for software protection. IEEE Transactions on Software Engineer-

ing, 28 (8), 735–746 .
Dietterich, T. G. (20 0 0). Ensemble methods in machine learning. In International

workshop on multiple classifier systems (pp. 1–15). Springer .
Fan, R.-E. , Chang, K.-W. , Hsieh, C.-J. , Wang, X.-R. , & Lin, C.-J. (2008). Liblinear: A

library for large linear classification. Journal of machine Learning research, 9 (Aug),
1871–1874 .

Ferrante, J. , Ottenstein, K. J. , & Warren, J. D. (1987). The program dependence graph

and its use in optimization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 9 (3), 319–349 .

Friedman, J. , Hastie, T. , Tibshirani, R. , et al. (20 0 0). Additive logistic regression: A
statistical view of boosting (with discussion and a rejoinder by the authors).

The Annals of Statistics, 28 (2), 337–407 .
Gunter, C. A. (1992). Semantics of programming languages: Structures and techniques .

MIT Press .

Higo, Y. , Yasushi, U. , Nishino, M. , & Kusumoto, S. (2011). Incremental code clone
detection: A PDG-based approach. In 2011 18th working conference on reverse

engineering (WCRE) (pp. 3–12). IEEE .
Ho, T. K. (1998). The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8), 832–844 .
Horwitz, S. , Prins, J. , & Reps, T. (1988). On the adequacy of program dependence

graphs for representing programs. In Proceedings of the 15th ACM SIGPLAN-SI-

GACT symposium on principles of programming languages (pp. 146–157). ACM .
Hotta, K. , Yang, J. , Higo, Y. , & Kusumoto, S. (2014). How accurate is coarse-grained

clone detection?: Comparison with fine-grained detectors. In Electronic commu-
nications of the eighth international workshop on software clones: 63 (pp. 1–18) .

Hummel, B. , Juergens, E. , Heinemann, L. , & Conradt, M. (2010). Index-based code
clone detection: incremental, distributed, scalable. In 2010 IEEE international

conference on software maintenance (ICSM) (pp. 1–9). IEEE .

Jiang, L. , Misherghi, G. , Su, Z. , & Glondu, S. (2007). Deckard: Scalable and accurate
tree-based detection of code clones. In Proceedings of the 29th international con-

ference on software engineering (pp. 96–105). IEEE Computer Society .
John, G. H. , & Langley, P. (1995). Estimating continuous distributions in Bayesian

classifiers. In Proceedings of the eleventh conference on uncertainty in artificial in-
telligence (pp. 338–345). Morgan Kaufmann Publishers Inc .

Juergens, E. , Deissenboeck, F. , Hummel, B. , & Wagner, S. (2009). Do code clones

matter? In 2009. IEEE 31st international conference on software engineering, 2009.
ICSE (pp. 4 85–4 95). IEEE .

Kamiya, T. , Kusumoto, S. , & Inoue, K. (2002). Ccfinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on

Software Engineering, 28 (7), 654–670 .
Kelly, S. L. (2014). AST Indexing: A Near-Constant Time Solution to the Get-

Descendants-by-Type Problem. Dikinson College Honors Theses. Paper 147.
Kim, M.-J. , Min, S.-H. , & Han, I. (2006). An evolutionary approach to the combina-

tion of multiple classifiers to predict a stock price index. Expert Systems with

Applications, 31 (2), 241–247 .
Kodhai, E. , Kanmani, S. , Kamatchi, A. , Radhika, R. , & Saranya, B. V. (2010). Detection

of type-1 and type-2 code clones using textual analysis and metrics. In 2010
international conference on recent trends in information, telecommunication and

computing (ITC) (pp. 241–243). IEEE .
Komondoor, R. , & Horwitz, S. (2001). Using slicing to identify duplication in source

code. In International static analysis symposium (pp. 40–56). Springer .

Krill, P. (14.04.2015). Java regains spot as most popular language in developer
index. https://www.infoworld.com/article/2909894/application-development/

java- back- at- 1- in- language- popularity- assessment.html .
Li, Z. , Lu, S. , Myagmar, S. , & Zhou, Y. (2006). Cp-miner: Finding copy-paste and re-

lated bugs in large-scale software code. IEEE Transactions on Software Engineer-
ing, 32 (3), 176–192 .

Likarish, P. , Jung, E. , & Jo, I. (2009). Obfuscated malicious Javascript detection using

classification techniques.. In Malware (pp. 47–54). Citeseer .
ouppe, G. , Wehenkel, L. , Sutera, A. , & Geurts, P. (2013). Understanding variable im-
portances in forests of randomized trees. In Advances in neural information pro-

cessing systems (pp. 431–439) .
urakami, H. , Hotta, K. , Higo, Y. , Igaki, H. , & Kusumoto, S. (2012). Folding repeated

instructions for improving token-based code clone detection. In 2012 IEEE 12th
international working conference on source code analysis and manipulation (SCAM)

(pp. 64–73). IEEE .
urakami, H. , Hotta, K. , Higo, Y. , Igaki, H. , & Kusumoto, S. (2013). Gapped code clone

detection with lightweight source code analysis. In 2013 IEEE 21st international

conference on program comprehension (ICPC) (pp. 93–102). IEEE .
’kane, P. , Sezer, S. , & McLaughlin, K. (2016). Detecting obfuscated malware us-

ing reduced opcode set and optimised runtime trace. Security Informatics, 5 (1),
1–12 .

agkhitwetsagul, C. , Krinke, J. , & Clark, D. (2016). Similarity of source code in the
presence of pervasive modifications. In 2016 IEEE 16th international working con-

ference on source code analysis and manipulation (SCAM) (pp. 117–126). IEEE .

ieck, K. , Trinius, P. , Willems, C. , & Holz, T. (2011). Automatic analysis of malware
behavior using machine learning. Journal of Computer Security, 19 (4), 639–668 .

odriguez, J. J. , Kuncheva, L. I. , & Alonso, C. J. (2006). Rotation forest: A new classi-
fier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 28 (10), 1619–1630 .
Roy, C. K. , & Cordy, J. R. (2007). A survey on software clone detection research.

Queen ́s School of Computing TR, 541 (115), 64–68 .

oy, C. K. , & Cordy, J. R. (2008). Nicad: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization. In The 16th IEEE in-

ternational conference on program comprehension, 2008. ICPC 2008 (pp. 172–181).
IEEE .

oy, C. K. , Cordy, J. R. , & Koschke, R. (2009). Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of Com-

puter Programming, 74 (7), 470–495 .

aini, V. , Sajnani, H. , Kim, J. , & Lopes, C. (2016). SourcererCC and sourcererCC-I:
tools to detect clones in batch mode and during software development. In Pro-

ceedings of the 38th international conference on software engineering companion
(pp. 597–600). ACM .

alzberg, S. L. (1994). C4.5: Programs for machine learning by J. Ross Quinlan. Mor-
gan Kaufmann Publishers, Inc., 1993. Machine Learning, 16 (3), 235–240 .

chulze, S. , & Meyer, D. (2013). On the robustness of clone detection to code ob-

fuscation. In Proceedings of the 7th international workshop on software clones
(pp. 62–68). IEEE Press .

heneamer, A. , Hazazi, H. , Roy, S. , & Kalita, J. (2017). Schemes for labeling semantic
code clones using machine learning. 16th IEEE intl conf on machine learning and

applications (IEEE ICMLA17) . IEEE .
heneamer, A. , & Kalita, J. (2015). Code clone detection using coarse and fine–

grained hybrid approaches. In 2015 IEEE seventh international conference on in-

telligent computing and information systems (ICICIS) (pp. 472–480). IEEE .
mith, T. F. , & Waterman, M. S. (1981). Identification of common molecular subse-

quences. Journal of Molecular Biology, 147 (1), 195–197 .
sai, C.-F. , & Hsiao, Y.-C. (2010). Combining multiple feature selection methods for

stock prediction: Union, intersection, and multi-intersection approaches. Deci-
sion Support Systems, 50 (1), 258–269 .

iera, A. J. , Garrett, J. M. , et al. (2005). Understanding interobserver agreement: The
kappa statistic. Family Medicine, 37 (5), 360–363 .

Wang, Y. , Cai, W.-D. , & Wei, P.-C. (2016). A deep learning approach for detecting ma-

licious Javascript code. Security and Communication Networks, 11 (9), 1520–1534 .
inskel, G. (1993). The formal semantics of programming languages: An introduction .

MIT Press .
itten, I. H. , & Frank, E. (2005). Data mining: Practical machine learning tools and

techniques . Morgan Kaufmann .
uan, Y. , & Guo, Y. (2011). CMCD: Count matrix based code clone detection. In 2011

18th Asia Pacific software engineering conference (APSEC) (pp. 250–257). IEEE .

uan, Y. , & Guo, Y. (2012). Boreas: an accurate and scalable token-based approach
to code clone detection. In 2012 proceedings of the 27th IEEE/ACM international

conference on automated software engineering (ASE) (pp. 286–289). IEEE .
hou, Y. , & Jiang, X. (2012). Dissecting android malware: Characterization and evo-

lution. In 2012 IEEE symposium on security and privacy (SP) (pp. 95–109). IEEE .

http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0026
https://www.infoworld.com/article/2909894/application-development/java-back-at-1-in-language-popularity-assessment.html
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30863-1/sbref0052

	A detection framework for semantic code clones and obfuscated code
	1 Introduction
	2 Background
	3 Prior research
	4 An integrated detection framework
	4.1 Java bytecode: low level features
	4.2 Source code features
	4.3 Fusion of code features
	4.4 Code similarity as a feature
	4.5 Complexity analysis
	4.6 A new code obfuscation and clone detection scheme

	5 Experimental evaluation
	5.1 Assessment design
	5.1.1 Obfuscated code dataset
	5.1.2 Clone dataset

	5.2 Ensemble classification model
	5.3 Experimental results
	5.3.1 Experimenting with varying feature fusion methods
	5.3.2 Experimenting with selected features

	5.4 Performance comparison
	5.4.1 Performance of obfuscated code detectors
	5.4.2 Comparison of clone detectors

	5.5 Extended experiments
	5.6 Execution time performances

	6 Threat to validity
	7 Conclusion
	 Supplementary material
	 References

