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Abstract

Regression testing is crucial for ensuring the quality of modern software systems, but
can be extremely costly In practice. Test-case prioritization has been proposed to
improve the effectiveness of regression testing by scheduling the execution order of
test cases to detect regression bugs faster. Since its first proposal, test-case prioritization
has been Intensively studied in the literature. In this chapter, we perform an extensive,
survey and analysis on existing test-case prioritization techniques, as well as pointing
out future directions for test-case prioritization. More specifically, we collect 191 papers
on test-case prioritization from 1997 to 2016 and conduct a detailed survey to system
atically investigate these work from six aspects, i.e., algorithms, criteria, measurements,
constraints, empirical studies, and scenarios. For each of the six aspects, we discuss the
existing work and the trend during the evolution of test-case prioritization. Furthermore,
we discuss the current limitations/issues in test-case prioritization research, as well as
potential future directions on test-case prioritization. Our analyses provide the evidence
that te^lt-case prioritization topic is attracting increasing interests, while the need for
practical test-case prioritization tools remains.

1. INTRODUCTION

Modern software systems keep evolving to refine software function
ality and maintainability, as well as fixing software flaws. Regression testing
has been widely used during software evolution to ensure that software
changes do not bring new regression faults. Although crucial, regression
testing can be extremely costly [1—3]. In the research literature, it has been
reported to consume 80% of the testing cost [4]. Furthermore, modern
industry companies also suffer from regression testing cost due to the large
number of accumulated test cases during software evolution. For example,
Google engineers have witnessed a quadratic increase in their regression
testing time, and the number of tests executed each day within Google
already exceeds 100 million [5—7].
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To alleviate the cost of regression testing, a large body of research has

been dedicated to this area and many approaches have been proposed, such

as test-suite reduction, regression test selection, and test-case prioritization
[1]. Test-suite reduction (also denoted as test-suite minimization) [2, 8-16]

aims at reducing the number of test cases by excluding redundant test

cases. Regression test selection [17—28] aims to select and rerun only the test

cases that are affected by code changes. Test-case prioritization [29-65] reor

ders test cases in order to maximize early fault detection. Among the three
areas, both test-suite reduction and regression test selection exclude some test

executions and may suffer from unsafe test execution (i.e., missing regression

faults). In contrast, test-case prioritization, the target area of this work, simply
reorders test executions and does not discard any test case. Therefore, test-
case prioritization does not have any fault-detection loss and has been

widely studied in research and applied in practice [5, 44, 66].

Test-case prioritization was first proposed in regression testing to deal

with the trade-off between what ideal regression testing should do and what
is affordable by scheduling the execution order of test cases [67]. However,
test-case prioritization is not the focus of that work. Later, Rothermel et al.

[29] presented a widely known industrial case to show the necessity of
test-case prioritization. Show in that work, the industry case has a product
with about 20,000 lines of code consuming 7 weeks on running the entire
test suite. Furthermore, that work also proposed various basic test-case
prioritization techniques, including the total and additional techniques,
which are usually taken as the control techniques in the evaluation of novel
test-case prioritization techniques, and still represent state-of-the-art test-

case prioritization according to three recent studies [68-70]. These two pieces
of work witness the beginning of test-case prioritization, and a large amount
of work has been proposed in the following two decades.

Briefly speaking, test-case prioritization aims to schedule the execution
order of test cases so as to satisfy some testing requirements. Formally, test-
case prioritization is defined as the following process: given any test suite T,
test-case prioritization is to find a pennutation T' of 7" satisfying J(T') >
f{PT), where PTrepresents any permutation of Tand/is a function defined
to map permutations of T to real numbers representing the prioritization
goal [32]. Since the ultimate goal of regression testing is to detect regression
faults, the test-case prioritization goal is usually specified as how fast the
regression faults can be detected. That is, test-case prioritization is usually
regarded as scheduling test cases to detect more faults earlier.
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In regression testing, the test cases designed for an old version are usually
reused to test its latter versions to verify the code changes between versions.
That is, to reveal faults in the latter versions as early as possible, the reused test
cases should be executed in some specified order, which is the aim of test-
case prioritization. In other words, regression test-case prioritization (usually
abbreviated as RTP) targets at scheduling the execution order of test cases
designed for an old version so as to detect faults in its latter versions as early as
possible. Besides regression testing, test-case prioritization is also applied to
other testing scenarios where test cases are not designed for an old version

but for the current version, which is called initial testing [71]. That is, test-

case prioritization in initial testing (abbreviated as ITP in this chapter) targets
at scheduling the execution order of test cases designed for the current

version so as to detect faults in the current version as early as possible.
Due to the characteristics of ITP (e.g., does not rely on old version infor

mation), its techniques are usually applicable to regression testing, whereas

the techniques of the latter may not be applicable for the fomier.
As the ultimate goal of test-case prioritization, detecting more faults

early is usually infeasible, because we can hardly know whether a test case
detects faults without running the test case. Many alternative goals like

structural coverage are used instead to guide the test-case prioritization

process fl, 29-33, 53, 72]. However, due to the inherent difference
between Alternative goals and the ultimate goal, test-case prioritization
becomes more difficult. Furthermore, even taking these alternative goals,
test-case prioritization is also an NP-hard problem [73]. Therefore, test-
case prioritization suffers from both the effectiveness and the efficiency
issues.

To promote the long-term development of the test-case prioritization
topic, it is necessary to review and summarize it systematically. However,
the existing surveys either summarized this topic at a high level together
with other topics (e.g., test-case selection and test-suite reduction) [1], orjust
reviewed test-case prioritization techniques before 2013 [74, 75]. During the
recent years, researchers have still been making obvious achievements on
this topic. For example, based on the papers collected for this survey (details
shown in Section 2), recent 3 yeai-s witness another upsurge in test-case
prioritization paper publications due to the popularity of continuous inte
gration. Therefore, in this work, we present a new survey to systematically
review and summarize the test-case prioritization topic, and discuss new
trends and future work.



A Survey on Regression Test-Case Prioritization

2. FRAMEWORK

In this section, we analyze the papers considered in this survey and
present the analysis framework of this survey. ^

To conduct an extensive survey, it is necessary for us to collect a
sufficient number of test-case prioritization papers, which represent the
past and current status of test-case prioritization. To achieve this goal, we
collected representative papers through two steps. First,,we used keywords
"test," "prion'tiz," and "priori tis" to obtain an initial set of related

papers. Second, we manually checked the initial set of papers to keep the
most representative papers. Finally, we have a set of 191 papers on test-case
prioritization in total. To the best of our knowledge, this is the most com
prehensive study on test-case prioritization in the Uterature.

Fig. 1 shows the number of analyzed papers on test-case prioritization
from 1997 to 2016. X-axis represents the year and V-axis represents the
number of papers. From Fig. 1, we observe that the number of test-case pri
oritization papers overall has a clear increasing trend since the first proposal of
test-case prioritization. The reason is that software systems grow larger and
larger during the last two decades (e.g., the Debian OS system [76] increased
from 55 million LoC to 419 million LoC between 2000 and 2012), and more

30 X"

22.5

1997 1999 2001 2003 2005 2007 2009 2011 2013

Fig. 1 Number of papers on test-case prioritization from 1997 to 2016.
2015
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and more regression test cases are also accumulated during the process, thus
stimulating the development of efficient regression testing techniques includ
ing test-case prioritization. In addition, we also see several upsuiges during
the development of test-case prioritization in 2004—2005, 2008-2009, and
2014-2015. We looked into the phenomenon, and found the potential
reasons for that. During 2004-2005, the modern distributed version control
systems including Git [77] and Mercurial [78] were being proposed. With the
advanced version control systems, more and more projects are hosted in
code repositories, bringing regression testing techniques to the attention of
the developers to test code revisions. During 2008-2009, the GitHub [79]
open-source project hosting service (the largest source-code hosting website
to date, with 20 million users and 57 million code repositories as of April 2017)
was initially released, and the hosted projects usually use regression testing to
validate code revisions. Another potential reason for the 2008-2009 resurge is
that the financial crisis increased the graduate student population. Finally, we
think that the resurge during 2014-2015 may be due to the recent develop
ment of mature Continuous Integration (CI) services, such as Travis [80] and
Jenkins [81], which extensively use regression testing to provide fast quality
feedback.

Following prior work on test-case prioritization [82], we also classify the
existing t^st-case prioritization work according to the following aspects: algo
rithms, criteria, measurements, scenarios, constraints, and empirical studies.
Fig. 2 shows the percentage of papers related to each aspect. Note that some

• Algoritnm
• Measurement

• Empirical study Criterion • Constraint

14%

Fig. 2 Ratio of papers of each category.
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papers cover multiple of those aspects, thus we categorize each paper based
on the main contribution of the work. Also note that this figure does not
show the percentage of papers on scenarios, because each test-case priori
tization technique has to be evaluated on some specific scenario, such as
version-specific test-case prioritization or general test-case prioritization
(details shown in Section 7).

According to Fig. 2, more than half of papers focus on investigating criteria
for prioritization, followed by the papers proposing prioritization algorithms
and the papers on empirical studies. Accessing the fault-detection capability of
each test case is always a big challenge and the key for prioritization problem,
which is hard to obtain in practice. Fault-detection capability interacts with
many other capability such as coverage capability, mutant-killing capability.
Thus researchers always keep figuring out many different ways to represent
or simulate the fault-detection capability, and plenty of test criteria are newly
proposed each year. Since prioritization problem is an NP-hard problem,
the algorithm to find the optimal solution among the solution space also
matters. Many advanced algorithms in other field can also be adopted to solve
the test-case prioritization problem, thus there are also a large number of
papers investigating prioritization algorithms. Naturally, due to the large
number of test-case prioritization approaches, the comparison between these
approaches is also crucial for providing practical guidelines in regression
testing, leading to the large number of empirical studies.

To furthe'r analyze the trend of each category' in test-case priotitization.
Fig. 3 further shows the number ofpapers belonging to each category per year.
Consistent with the ratio results of Fig. 2, most of the papers published each
year work on investing effective test criteria for test-case prioritization, indi
cating the researchers' effort in finding optimal test criteria to simulate the
fault-detection capabilities of tests a cross the last two decades. Besides, since
2009, prioritization algorithms and empirical studies also attracted increasing
attentions, indicating the switch of research interests in this area. We suspect
the reason to be as follows. In the initial stage of test-case prioritization (i.e., in
1997), there were not many works in this area, and thus the researchers mainly
focused on the core problem of finding suitable surrogates (i.e., various test
criteria) for real fault-detection capabilities. Later on, when the test-case pri
oritization area became more mature since 2009, researchers began to spend
more efforts on designing new prioritization algorithms. Meanwhile, due to
the large number of emerging papers on test-case prioritization, practitioners
often found it hard to find the optimal technique. Therefore, a large body of
research has also been dedicated to empirically evaluating and comparing
various test-case prioritization techniques.



\

Algorithm ! Criterion

3.5

Empirical study Measurement Constraint

J
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Fig. 3 Number of papers of each category per year.
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In this survey, we discuss the development and future directions
for each aspect of test-case prioritization in details. The remaining of this
chapter is organized as follows. Sections 3—8 review test-case prioritization
from the aforementioned six aspects, i.e., coverage criterion, prioritization
algorithm, measurement, constraint, scenario, and empirical study. S^tion 9
discusses the challenges, issues, and future work in test-case prioritization,
and finally Section 10 concludes this chapter.

3. CRITERION

Since it is hard to obtain the fault-detection capability of each test
case directly ifi practice, various criteria are proposed to assess test-case
fault-detection capability in prioritization. Besides test-case prioritization,
criteria are also widely used in test generation, selection, and minimization
[8, 17, 83].

Usually, large coverage criterion value means large probability of expos
ing faults in a program, and thus maximizing criterion values can be an inter
mediate goal of test-case prioritization. That is, criteria are actually used
to guide the prioritization process. For example, branch-coverage-based
prioritization [84] schedules the execution order of test cases based on the
branch coverage of these test cases. Due to the importance of criteria, many
of the existing work [34, 38, 60, 84—135] investigates their influence in the

/

evaluation.

3.1 Structural Criterion

Among all criteria, structural coverage is the mostly used one. In particular,
a structural coverage criterion is defined as the percentage of structural units
covered by a test case [136—142]. For example, the widely used structural
coverage criterion is statement coverage, which measures to what extent
a test case covers statements during test-case execution. Higher statement
coverage indicates larger fault-detection capability because without cover
ing faulty statements a test case cannot reveal the corresponding faults.

Besides statement coverage [29], some other structural units like func
tions/methods [30], blocks [67], and modified condition/decision [32] have
also been considered as a type of structural coverage criterion.

Interestingly, the experiment results in the work of Rothermel et al.
[29, 30] showed that in most cases, branch coverage outperfomied statement
coverage using a set of C programs. But in more recent work ofLu et al. [68],
statement coverage usually perfomis best among these coverage criteria on a
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set of real-world Java programs. One potential reason could be that
branches are less prevalent for the object-oriented Java programs than the
procedural C programs, making branch coverage ineffective for Java.

3.2 Model-Level Criterion

Though structural criteria are widely used, sometimes, structural coverage
can be unavailable for black-box or can be quite expensive to obtain for large
systems. System models can capture the different behaviors of a system and
there are some modeling languages proposed to model state-based software
systems. Recently, model-based techniques have been adopted in software
testing, such as test-case generation [143, 144], test-suite reduction [145],
and test-case prioritization [117, 146-150]

Korel et al. [147] presented a novel test-case prioritization based on state-
based models which execution infonnation of the original and modified
models is used for retesting the modified software system. Furthennore,
Korel et al. [146] further proposed several model-based test-case prioritization
heurisrics and enipiricaUy investigated the improvements of these heuristics
strategies. Xu and Ding [117] proposed an aspect-related test-case prioriti
zation based on the incremental testing paradigm. Aspects are incremental
modifications to the base classes, thus the tests targeting the aspects would
be selected to execute first for they are more likely to detect the failures.

/

3.3 Fault-Related Criterion

As testing criteria are usually used to measure the fault-detection capability
of a test case or a test suite, some researchers presented some fault-detection
criteria directly because the preceding code-based coverage cntena cannot
sufficiently assess the capability of a test case or a test suite [151-156].

In particular, Rothermel et al. [84] introduced mutation score to repre
sent each test case's fault-exposing-potential, which regarded niutation-
kiUing-capabilit)' as fault-detection-capability. Elbaum et al. [157] used
the fault-index to estimate the fiiult proneness for each program unit, which
had been proved effective in previous work [158, 159]. The calculation
process of fault-index was as follows: (1), each function was associated
with some measurable attributes; (2), all attribute values were standardized
according to a group of baseline values; (3), the set would be reduce to a
smaller one by principal components analysis [160]; (4), the left values were
represented by a linear function which could generate one fault-index for
each function in the program.
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Ma and Zhao [125] proposed a new prioritization index called testing-
importance of module (TIM), which consisted of two factors: fault prone-
ness and importance of module, which acted as a new metric to measure the
severe fault proneness for module covered by test cases. Lou et al. [95] seeded
mutation on the changed code between versions to imitate the real faults
introduced during software evolution. Therefore, the capability of^kiUing
these mutants can represent the capability of detecting real faults to some
extent.

3.4 Test Input-Based Criterion

Since the strucmral coverage, model information and mutation analysis
can be costly to obtain, recently researchers started to measure the fault-
detection capability of test cases based on the input data alone rather than
the execution information of test cases. That is, this type of criteria measures
the fault-detection capability by calculating the difference between test input
data, which are usually regarded as strings or vectors.

In particular, Ledru [161] proposed a prioritization approach which
compared the string distance between test cases with a greedy algorithm.
Chen et al. [162] proposed a test-vector-based approach to prioritizing test
programs for compilers by analyzing the extracted features of test programs
to solve the efficiency problem of compiler testing [163]. Recently, Chen
et al. [164] proposed to predict the bug-revealing probabilities per unit time
of test programs for compilers via machine learning, and schedule the exe
cution order of these test programs based on the descending order of these
bug-revealing probabilities per unit time. Chen et al. [89] transfonned test
cases into a form of vectors for clustering. Jiang et al. [165] proposed a novel
family of input-based prioritization techniques, which calculates the differ
ence between test cases by three types of distance functions.

3.5 Change Impact-Based Criterion
Change infomiation are also used very frequently in prioritization criteria
[166, 167]. For example, the modified condition mentioned in structural
unit level criteria also used the change information during program evolu
tion. However, there is a category of criteria analyzing the change code in
a more specific way, so this section introduce these criteria individually.

Haraty et al. [168] proposed a clustering prioritization approach based
on code change relevance, which mainly prioritized clusters of test cases
based on their relevance to code changes. Alves et al. [169] proposed a
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refactoring-based approach to prioritizing tests for detecting refactoring
bugs. The approach first collected the change edits between two versions
of a program and then analyzed the change impact based on a number of
refactoring fault models to detemiine the execution order of test cases.

Panda et al. fl70] presented a static analysis approach to prioritizing test
cases based on affected component coupling of object-oriented programs.
It first constructed affected slice graph whose nodes had different fault-
proneness and then scheduled execution order based on the nodes covered

by each test case.

3.6 Other Criteria

Besides, some studies are hard to categorize into aforementioned categories.

3.6.1 Risk

Hettiarachchi et al. [171] proposed a risk-based test case prioritization
approach, which applied a fuzzy expert system to estimate the risks systemat
ically for requirements and prioritized test cases based on the risks they
involved.

3.6.2 Similarity

Fang et al. [100] proposed a similarity-based test case prioritization which ,
transformed test case's execution profile into an ordered sequence of
prograpi entities and compared distance of the sequence of each test case.

3.6.3 Service History

Srikanth et al. [172] prioritized building acceptance test cases based on the
service history data from several months, i.e., service interaction and histor
ically failing services.

3.6.4 Requirement

Arafeen et al. [173] proposed a test-case prioritization approach which clus
tered test cases according to the requirement similarities in order to utilize
requirements infonnation.

4. PRIORITIZATION ALGORITHM

In this section, we introduce the algorithms used to guide test-case
prioritization. Specifically, we classify the existing prioritization algo
rithms into several groups, i.e., greedy algorithm, search-based algorithm.
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infomiation-retrieval-based algorithm, integrate-linear-programming-based
algorithm, machine-learning-based algorithm. Moreover, when introducing
the prioritization algorithms, we take the statement coverage criterion as
the representative, although many following algorithms can be applied to
various criteria, e.g., method coverage, branch coverage, and even advanced
data-flow coverage criteria [84, 85].

4.1 Greedy Algorithm

Greedy algorithms are widely used to address the test-case prioritization
problem, which focus on always selecting the current "best" test case during
test-case prioritization. The greedy algorithms can be classified into two
groups. The first group aims to select tests covering more statements, whereas
the second group aims to select tests that is farthest from the selected tests.

Regarding to the first group, the most popular greedy algorithms are the
total and additional algorithms. In particular, the total algorithm prioritizes
test cases based on the descendent order of statements covered by each test
case, whereas the additional algorithm prioritizes test cases based on the
descendent order of statements that are covered by each unselected test case
but uncovered by the existing selected test cases. As the total and additional
algorithms can have best performance in different cases, Zhang et al. [174,
175] proposed a unified prioritization model, which uses a probabilistic
model to bridge the gap between the total and additional algorithms so that
the total and additional algorithms can be regarded as its two extreme
instances. Moreover, this model yields a spectrum of specific prioritization
algorithms between the total and additional algorithms. Besides, Li et al. [72]
proposed the 2-optimal strategy which was based on iC-optimal algorithm
[176] where iC = 2. Different from approaches mentioned above, the
2-optimal approach tries to select "next two best" test cases according to
coverage ability of each pair of test cases.

Regarding to the second group, the typical greedy algorithm is adaptive
random test-case prioritization [177], which is proposed based on adaptive
random testing [178, 179]. In particular, it first iteratively generates a
candidate set of test cases and selects one test case based on a selectino- aDo-

& &

rithm. The selecting algorithm aims to select a test case that is the farthest
from the already selected test cases based on a distance definition function
/I and a farthest selection function J2. In particular, this work proposed
to use Jaccard distance to define /I and defined three types of selection
function J2.
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The greedy algorithms focus on searching the local optimal solution to
prioritization, and thus their prioritization results may not be the optimal
solution.

4.2 Search-Based Algorithm

Since the prioritization problem is an NP-hard problem, greedy algorithms
can not always obtain the optimal solution within the solution space. There
fore, some search-based algorithms are applied to solve the prioritization
problem, aiming to achieve better prioritization results with acceptable
computation cost.

In particular, Li et al. [72] applied meta-heuristic search-based algorithms
to test-case prioritization. That is, they applied steepest ascent hill-climbing
and genetic algorithms. In particular, steepest ascent hill climbing is a local
search algorithm, where each test permutation is regarded as a state. This
algorithm iteratively switches to best state among all neighbors of the
current state. The genetic algorithm [72] is based on the processes of natural
selection according to Darwinian theory of biological evolution. In this
algorithm, each test sequence is encoded in an N-sized array representing
an instance of chromosome. In the initial step, a group of test sequences
is generated randomly as the initial individuals. Iteratively, a new genera
tion is generated by combining selected individuals guided by the fitness
function. The whole search process will be temiinated until certain require
ment is satisfied.

Besides the traditional single-objective test-case prioritization, there is
another fonn of test-case prioritization problem, called multiobjective
test-case prioritization. Given a test suite T, the set of T's permutations
PT, and a vector ofMobjective functions, /](/ =1,2,..., M), multiobjective
test-case prioritization aims at finding T' C PT such that T' is a Pareto-
optimal permutation set with respect to the objective functions, ̂(i = 1,
2, M). The objective functions usually are some important prioritization
criteria. Pareto-optimal means that strategy A improves strategy B without
making things worse.

Epitropakis et al. [180] investigated multiobjective test-case prioritiza
tion through three objectives: average percentage of coverage, average per
centage of coverage of changed code, and average percentage of past fault
coverage and evaluated the fault-detection capabilities in the experiment.

Solving multiobjective problem in software engineering by multiobjective
evolutionary algorithms usually faces with the challenge of scalability problem
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due to the population size and iterations. Therefore, Li et al. [181] proposed a
novel GPU-based parallel fitness evaluation algorithm for test-case prioritiza
tion, which implemented the fitness evaluation and crossover computation
by graphic processing units on GPU.

Overall, the characteristics of search-based prioritization algorithms lie in

searching for the optimal solution guided by the predefined fitness function
within the searching space.

4.3 Integrate-Linear-Programming-Based Algorithm

Integrated linear programming (abbreviated as ILP) is a mathematical
optimization or feasibility program where all the variables, objective func
tions, and constraints are linear, which is an NP-hard problem. Recently,
researchers applied ILP to describe the problem of test-case prioritization
and thus the solutions to the ILP formula are the prioritization results.
That is, the problem of test-case prioritization is transformed into formula
construction and solving process.

In particular, Zhang et al. [82] firstly applied ILP to solve time-aware
test-case prioritization. In particular, this approach first selects a set of test cases
by solving the ILP formula describing time-aware test-case prioritization, and
then prioritizes selected test cases through some greedy strategies. Recently,
to investig^e the bound of coverage-based test-case prioritization, Hao
et al. [182] used ILP to represent coverage-based test-case prioritization
so as to learn the performance of optimal coverage-based test-case prioriti
zation techniques.

4.4 Information-Retrieval-Based Algorithm

Information retrieval (abbreviated as IR) techniques [183] aim to obtain
information needed from a collection of information resources, which have

been fuUy studied in the last 40 years and applied to various domains, includ
ing software engineering. The main idea of information-retrieval-based
algorithm is as follows: (1) it uses test case infomiation such as execution
infomiation or source code of each test case to construct the corresponding

document collection for each test case, namely, each document represents

one test case; (2) it uses source code information (usually the changed part
of source code) serving as the input query of IR, and IR will retum a ranked
list of the documents constructed in the first step, which in fact is a ranked
list of test cases by the relevance to the input infomiation.
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In particular, Nguyen et al. [184] proposed an IR-based approach to
prioritizing test cases for web services, which used the identifier documents
extracted from the execution trace to represent each test case and used the
web service change description as the input quei^ of JR.

Kwon et al. [185] proposed an IR-based approach which adapted term
frequency (TF) and inverse document frequency (IDF) to prioritize test
cases. This approach considers not only code coverage infonnation but also
how many times a coverage element is executed by a test case (TF) and
source code elements are tested by few test cases (IDF). Linear regression
model is applied to weigh the value of the infomiation.

Later on, Saha et al. [186] proposed an IR-based approach to prioritize
JUnit test cases. Their approach used the test source code to construct
the relative document for each test case and used the changed code of the
program under test as the input query to get a ranked list of test cases by their
relevance to program changes.

4.5 Machine-Learning-Based Algorithm
Machine learning is a data-analysis technique that builds a model from
sample input to make prediction for new data. Typically, machine learning
techniques consist of supervised learning and unsupervised learning (called
clustering as well).

Tonella et al. [133] presented a machine-learning-based test-case prior
itization approach which incorporated user knowledge by case-based rank
ing model. This approach used the indicator of priority, which was defined
by user cases, and test case infonnation such as coverage and fault proneness
metrics as features to train a model to predict the priority of test cases. Chen
et al. [162] proposed a test-vector based approach to prioritizing test pro
grams for compilers, which did not need to collect coverage information
but only analyze necessary features from each test program itself to pnontize
test programs for compilers. More recently, Chen et al. [164] developed
LET (short for learning to test), which learned from existing test programs
to accelerate future test execution. LET first designed and extracted a lot
of features from the source code of test programs (e.g., address features
and pointer comparison features). Then, LET trained a capability model
to predict the bug-reveahng probabiHty of each new test program, and a time
model to predict the execution time of each new test program, based on these
features. Finally, LET pnoritized new test programs as the descending order
of their bug-revealing probabilities in unit time.
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5. MEASUREMENT

To access the performance of test-case prioritization techniques, it is

necessary to propose a measurement for test-case prioritization, including

efBciency and effectiveness.

With regard to the efficiency of test-case prioritization, researchers
usually use the complexity analysis of a prioritization algorithm to measure
its cost. For example, Elbaum et al. [157] analyzed that the complexity of the

statement-coverage-based total prioritization technique is 0{nin + mlogm)
and the complexity of the statement-coverage-based additional prioritiza
tion technique is 0{m^n), where m represents the number of test cases
and n represents the number of statements in a program.

With regard to the effectiveness of test-case prioritization, most of the
existing work uses the average of percentage of faults detected (abbreviated

as APED). Besides, as this measurement suffers ffom the widely known

problems, e.g., ignoring the impact of testing time and fault severities, many
researchers further improved this measurement accordingly. In the follow
ing, we briefly introduce the measurements used in test-case prioritization.

5.1 APFD

Rothermel et al. [29] proposed the first measurement for assessing the
effectivene^ of test-case prioritization, which is called weighted average
of the percentage of faults detected (APFD). APFD measures how rapidly a

prioritized test suite detects faults. Higher APFD values mean faster fault-
detection rates. Formula (1) shows how to calculate APFD values for a

test-case prioritization technique. In this formula, TFj refers to the first test
case in prioritized test suite that detects the^th fault, n refers to the number of
test cases, and m refers to the number of faults detected by the test suite.

APFD has already become one of the most widely used measurements for
assessing the performance of test-case prioritization in the literature [71].

APFD = l-£fcl^ + -!- (1)
nm 2n

5.2 AFPDc

Actually, APFD does not reflect the practical perfomrance of test-case
prioritization, since it ignores the influence of test execution costs and fault
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severity. Therefore, Elbaum et al. [33] flirther proposed another measure
ment to measure the practical performance of test-case prioritization by con
sidering the influence of the two factors, which is called cost-cognizant
weighted average percentage of faults detected (APFDc). APFDcis actually
adapted from APFD, which is defined as Formula (2). In this formula,
refers to the severity of the ith fault detected by the prioritized test suite,
and tj refers to the test cost of the ̂th test case in the prioritized test suite.

APFDc = ^

j=\ ./='

In practice, it tends to be quite difficult to know the severity of each fault
in advance. Therefore, a simplified APFDc is usually used to measure the
performance of test-case prioritization by treating all faults as sharing the
same severity [180], The simplified APFDc is shown as Formula (3).

APFDc (simplified)

/

m ( n A

El
(3)

./=!

5.3 APXC

In order to measure the performance of test-case prioritization before test-
case execution, researchers [72, 182] also proposed to leverage the average
percentage of some structural coverage (abbreviated as APXC) as a measure
ment. APXC has the similar fomiula with APFD. For APXC, TFj m
Formula (1) refers to the first test case in prioritized test suite that covers
structural units (e.g., statement and block) j, and in refers to the total nunibei
of structural units covered by the test suite. In particular, higher APXC.
values mean faster coverage rates.

According to the general definition of APXC, we may have APBC tci
measure the rate at which a prioritized test suite covers the blocks, APSC
to measure the rate at which a prioritized test suite covers the statements.
Such measurements are defined based on structural units, which are not
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the ultimate goal. Therefore, they are actually widely used as an intermediate

goal (e.g., fitness function) during search-based test-case prioritization to
guide test-case prioritization, rather than as a measurement for the perfor
mance of test-case prioritization.

5.4 WGFD

Higher APFD values mean faster fault detection. However, the problem is
how to define "fasmess." In different testing scenarios, "fastness" tends to have

different definitions. Therefore, Lv et al. [187] proposed a new generalized
measurement from a control theory viewpoint, which is called the weighted
gain of faults detected (WGFD). The basic idea is to weight and sum fault-
detection rates of different test cases so as to define "fastness" in different test

ing scenarios. That is, since the number of test cases detected at different time

should have different impact on measuring the perfomiance (fastness) of a
prioritization technique, different weights should be assigned to the fault-
detection rates of different test cases. In particular, WGFD is defined in

Formula (4), where n refers to the number of test cases in the test suite, r(i)
refers to the fault-detection rate of test case i, and w({) refers to the assigned
weight to the fault-detection rate of test case i.

n

WGFD = ̂w{i) * r{i) (4)
1=1

/'

5.5 HMFD

According Formula (1), the APFD measure increases as the size of the test

suite increases. In other words, APFD is affected by the size of a given test
suite. To relieve this issue of APFD, Zhai et al. [99] proposed a new mea
surement to measure how quickly a prioritized test suite can detect faults,

which is independent from the size of a given test suite. The new measure
ment is called the harmonic mean of the rate of fault detection (HMFD). In
particular, HMFD is defined as Formula (5), where TFj refers to the first test
case in the prioritized test suite that detects the /th fault, and m is the number

of faults detected by the test suite. Note that low HMFD values mean better

performance of test-case prioritization.

Ill

HMFD =

y— (5)
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5.6 NAPFD and RAPFD

In practice, there may be various constraints in test-case prioritization. Due
to the existence of practical constraints in test-case prioritization, not all of
the faults can be detected by a given test suite. Moreover, we may not exe
cute the same number of test cases. Walcott et al. [188] proposed to assign a
penalty to the missing faults so as to solve the first problem. In addition, Qu
et al. fl89] proposed normalized APFD (abbreviated as NAPFD) to measure
the perfonnance of test-case prioritization in order to solve the two prob
lems. In particular, NAPFD is defined as Fonnula (6), where p refers to the
value that is calculated by dividing the number of faults detected by the
prioritized test suite by the number of faults detected by the full test suite.
To further improve these measurements, Wang and Chen [190] proposed
the relative average percent of faults detected (RAPFD) by considering

the given testing resource constraint, which determines how many test cases
could be run. Furthermore, Do and Rothermel [191, 192] further proposed
many improved cost-benefit models for assessing regression testing method
ologies (including test-case prioritization). In particular, these models incor
porate context factors (e.g., the costs of some essential testing activities
such as test setup and obsolete test identification) and lifecycle factors (e.g.,
the costs and benefits for techniques across system lifetimes).

m

NAPFD = p - ^
inn 2n

6. CONSTRAINT

As a practical problem, test-case prioritization tends to suffer from
various practical constraints. Therefore, many studies investigated how to pri
oritize test cases when considering practical constraints [88,121,127,188,193].

6.1 Time Constraint

The mostly studied constraint in test-case prioritization is the time constraint,
also called time budget [188]. Ideally, all the test cases in the prioritized test
suite are expected to be executed during the process of software testing, so
as to avoid fault-detection capability loss of the test suite. However, under
the practical environment of software testing, the allowed testing time may
not be quite sufficient, which causes that the prioritized test suite may not
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be totally executed. For example, in some companies, software testing is just

allowed in night [188, 194], and thus if the time of executing the whole test
suite is more than one night, some prioritized test cases will not be executed.

Besides, new software development processes, e.g., extreme prograimning,

also advocate a short testing cycle. Therefore, on this occasion, the time

constraint is quite necessary to be considered when prioritizing test cases.
To make test-case prioritization more effective given the allowed testing

time, various approaches have been proposed to select only a subset of test
cases and schedule their execution order rather than all the test cases. Walcott

et al. [188] proposed time-aware test-case prioritization. More specifically,
they used a genetic algorithm to prioritize test cases in order to achieve two
goals. The first goal is to ensure that the prioritized test cases can be executed
within the given testing time. The second goal is to make the prioritized test
cases achieve the largest fault-detection capability. To achieve the same
goals, Alspaugh et al. [195] proposed to use 0/1 knapsack solvers to prioritize
test cases, including greedy, dynamic programming, and the core algorithms.

Zhang et al. [82] identified that time-aware test-case prioritization implied
to select a subset of test cases from the test suite for prioritization. Therefore,
they proposed to combine test-case selection and test-case prioritization to
achieve the goals of time-aware test-case prioritization. More specifically,
they first used integer linear programming [ 196] to select a subset of test cases
that can achieve the maximum test coverage within the time budget, and
then applied traditional test-case prioritization techniques to schedule the
execution order of the selected test cases. Note that, in this way, the tradi

tional total technique and the traditional additional technique are both

adapted to be time-aware total technique and time-aware additional tech
nique. Later on, Suri et al. [197] also applied ant colony optimization to
prioritize test cases in the time constraint environment.

Based on the existing research [188, 191], considering the time constraint
in test-case prioritization may influence the costs and benefits of test-case
prioritization techniques. Do et al. [198] conducted a series of experiments
to investigate such influence. Their experimental results demonstrated that
the time constraint indeed has a significant influence on the cost-effectiveness
of test-case prioritization techniques. Furthemiore, You etal. [199] conducted

an empirical study to investigate whether the time cost of each test case influ
ences the effectiveness of time-aware test-case prioritization. Their experi
mental results showed that the effectiveness of the prioritization techniques
considering the time cost of each test case has no significant difference with
that of the prioritization techniques omitting the time cost of each test case.
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That is, it tends to be not worth considering the time cost of each test case
for time-aware test-case prioritization. In addition, Marijan [38] proposed a
framework for optimal test-case prioritization in the time constraint environ
ment by integi-ating three different perspectives, including business perspec
tive, performance perspective, and test design perspective. More specifically,
fi-om a business perspective, failure impact is regarded as an important factor
influencing test effectiveness; from a perfomrance perspective, test execution
time is regarded as an obvious factor of test effectiveness; from a technical
perspective, both failure frequency and cross-functionality are regarded as
important factors of test effectiveness. In particular, failure frequency refers
to a measure of how often test cases detect failures, and cross-functionality
refers to a measure of how much the functionality of the system under test
is covered by a test case.

6.2 Fault Severity

Another widely studied constraint in test-case prioritization is fault severity.
The fault severity reflects the costs or resources required if a fault persists
in and influences the users/organization/developers. The existing test-case
prioritization is based on the assumption that the severity of aU the faults are
considered equally. However, the assumption may not hold in practice, and
thus the fault severity is also a practical constraint for test-case prioritization.

Elbaunf et al. [33] firstly considered the fault severity constraint
when measuring the effectiveness of test-case prioritization techniques. Park
et al. [200] proposed to prioritize test cases by considering fault severity. In
particular, they estimate the current fault severity using history infomiation.
Actually, their approach has an a.ssumption, i.e., test costs and fault severities

are not largely changed from one version to a later version. Malishevsky et al.
[201] adapted traditional test-case prioritization (e.g., the total technique and
the additional technique) to cost-cognizant test-case prioritization by consid
ering the fault severity constraint and the time cost of each test case. Huang
et al. [108] also proposed a history-based cost-cognizant test-case prioritiza
tion. More specifically, their approach collected the historical records from
the latest regression testing and then used a genetic algorithm to schedule
the most effective execution order of test cases.

6.3 Other Constraints

Besides, resource (e.g., hardware resource) is also a constraint in test-case

prioritization. Kim and Porter [193] proposed a test-case prioritization based
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on history infomiation by considering the resource constraint and time con

straint. That is, they assigned a selection probability for each test case based

on history information, and selected a test case to run based on these prob
abilities until testing time is exhausted. More specifically, their utilized
history information contains the execution history of each test c^e, the
corresponding fault detection, and/or the covered program entities. Wang
et al. [88] proposed a resource-aware multiobjective optimization solution
to produce an optimal execution order of test cases by considering the
resource constraint and the time constraint. In the multiobjective optimiza

tion solution, they defined a fitness function based on four cost-effectiveness
measures, including (1) minimizing the time for executing prioritized test
cases and allocating relevant test resources; (2) maximizing the number of
test cases to be executed; (3) maximizing the usage of available test resources;
and (4) maximizing fault-detection achieved by prioritized test cases.

Furthermore, there are some other constraints, e.g., testing requirement

priorities and the request quotas of web service. To prioritize test cases by
considering testing requirement priorities, Zhang et al. [127] proposed to
utilize test history infomiation to evaluate the priorities of test cases so as
to prioritize test cases hased on them. Here various types of code elements
can be regarded as testing requirements, e.g., statements, basic blocks,
methods; or features and attributions of system; or faults in system. About

the constraint of the request quotas of web service (e.g., the upper limit
of the number of requests that a user can send to a Web Service during a

certain time range), Hou et al. [121] proposed quota-constrained test-case
prioritization for service-centric systems by maximize testing requirement
coverage. More specifically, they first divided the testing time into time slots,
and then selected and prioritized test cases for each slot by using integer
linear programming.

7. APPLICATION SCENARIO

Test-case prioritization aims to speed up fault detection for the new
software version during software evolution. Balancing the overhead and
effectiveness, two different application scenarios have been explored—(1)
general test-case prioritization and (2) version-specific test-case prioritization.

General test-case prioritization techniques [68-70, 84, 202] usually com
pute the optimal test order once for one revision, and then reuse that test
order for a number of subsequent revisions. On the contrary, version-

specific test-case prioritization techniques [66, 95, 146, 186] compute the
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optimal test order right before each revision in order to achieve effective
test-case prioritization. While version-specific test-case prioritization may
achieve more precise results, it may incur higher overhead due to the
frequent test-case prioritization runs. In this section, we discuss the details
for such two application scenarios.

7.1 General Test-Case Prioritization

Given a program P and its coiTesponding test suite T, general test-case
prioritization [68-70, 84, 202] computes test e.xecution order valid for a
number of subsequent modified revisions of P. Therefore, they are usually
based on general program/test information shared by various revisions,
e.g., the set of program elements covered by each test.

For example, if test covers more program elements than ta
program revision, the same may still hold for later program revisions.
Therefore, traditional test-case prioritization techniques based on coverage
infonnation, e.g., the total/additional [84, 157], adaptive-random-testing-based
[177], and search-based techniques [72], can all be directly utilized for general
test-case prioritization.

When prioritizing using coverage infonnation obtained from historical
revisions, software changes and test additions could make test-case prioriti
zation techniques ineffective since coverage infonnation can be obsolete |
(due to software changes) or absent (for newly added tests) during the
software evolution. To study the impacts of software changes and test addi
tions for general test-case prioritization, Lu et al. [68] recently peifonned
a study on real-world evolving GitHub projects. The study results demon
strate that software changes do not impact general test-case prioritization
much, whereas test additions, which incur tests without coverage infonna
tion, may significantly impact the effectiveness of general test-case prioriti
zation. The study provides practical guidelines for determining the intervals
of applying general test-case prioritization—general test-case pnontization
should be reapplied whenever there are nontrivial number of added tests.

7.2 Version-Specific Test-Case Prioritization
Given a program P and its corresponding test suite T, version-specific
test-case pnontization [66, 95, 146, 186] computes optimal test execution
orderings specifically for P', the next revision of P. Version-specific test-case
priontization is performed after changes have been made to P and prior to
regression testing of P'■ The prioritized test suite may be more effective foi
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testing P' than that computed by general test-case prioritization, but may
be inferior on average on a succession of subsequent releases of P.

In the literature, researchers have also applied traditional coverage-based
test-case prioritization techniques to the version-specific scenario. Further
more, since regression faults are mainly due to software changes, researchers
have also proposed various version-specific test-case prioritization^tech-
niques [66, 95, 146, 186] based on the detailed change information during
software revision for more effective test-case prioritization. For example,
Srivastava and Thiagarajan [66] analyzed the binary-level basic block changes
to execute tests covering more changes earlier for faster regression fault detec
tion. Korel et al. [146] analyzed the system models and computed model-level

modifications for precise version-specific test-case prioritization. Lou et al.

[95] presented a mutation-based version-specific test-case prioritization tech
nique, which simulates faults occurred in software evolution by mutants on

the change and prioritizes test cases based on their killing information on these
simulation faults. Recendy, Saha et al. [186] transformed the version-specific

test-case prioritization problem into an information retrieval problem by
treating source-code level changes as queries and test-case source code as

documents. Then, the tests with more textual similarities with software

changes are executed earlier to detect regression bugs faster.

EMPIRICAL STUDY

Due to^he large number of existing test-case prioritization techniques,
it can be hard to make the right/optimal choices in practice. Therefore,
researchers have also performed various studies on test-case prioritization
techniques to provide practical guidelines for test-case prioritization.

8.1 Studies on Traditional Dynamic Prioritization

Due to the dominant position of traditional dynamic test-case prioritization
techniques, the vast majority of studies explore various factors around these
techniques.

Rothemiel et al. [84] empirically compared various dynamic test-case

prioritization techniques (including coverage-based and mutation-based tech
niques) against unordered or randomized test suites on a suite of C programs.
Later on, Elbaum et al. [33] flirther studied the impacts of fault severities
and test execution time on test-case prioritization. Elbaum et al. [157] also

investigated the impacts of program versions, program types, and different cov
erage granularities on test-case prioritization on C programs. Do et al. [203]
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perfomied the first study of test-case prioritization on JUnit tests for Java
programs. The study demonstrated the effectiveness ofdynamic test-case prior
itization on Java programs besides C programs, and also revealed divergent
behaviors of test-case prioritization on Java and C programs. Do et al. [198] also
investigated the effect of time constraints on the cost-effectiveness of test-case
prioritization, as well as demonstrating the validity of using mutation faults
for test-case prioritization experiments [156, 204]. Recently, Lu et al. [68]
investigated the impacts of real-world software evolution on test-case prioriti
zation and found that code changes do not impact the effectiveness of test-case

prioritization much while test additions can significantly lower the effectiveness
of traditional dynamic test-case prioritization.

In terms of effectiveness, various studies have confirmed that the
traditional additional [84] and search-based [72] test-case prioritization tech
niques represent the state of the art [68, 72, 174, 177].

8.2 Comparison With Traditional Dynamic Techniques
Besides the traditional dynamic test-case prioritization techniques, researchers
have also proposed various other test-case prioritization techniques. In the
next, we present two recent but important studies comparing traditional
dynamic test-case prioritization with other static or black-box techniques.

8.2.1 Dynamic vs Static
Traditional dynamic test-case prioritization techniques [72, 84, 177] mainly
reply oiydynamic execution infomiation (e.g., statement or method coverage)
to prioritize tests. Although effective, they may not be suitable for all the cases.
For some software systems, it may not be possible to collect dynamic execu
tion information via code instrumentation, e.g., code instrumentation may
interrupt normal test run for real-time systems. For some software systems,
dynamic execution information may not be always precise, e.g., code with
concurrency and randomness. Even it is possible to collect precise dynamic
execution for some software systems, dynamic instrumentation may incur
high overhead, e.g., even the coarse file/class-level dynamic infomiation
may incur 8x slowdown for commons math [205]. Finally, the dynamic exe
cution infomiation may not always be available on the old version [137, 206].
Therefore, Zhang et al. [137] fii^dy proposed to use static analysis to simulate
the dynamic execution infomiation. More specifically, they used the static
call graph infomiation of each test to simulate the method-level coverage o
the test since the static call gi-aph is always a superset of the actual metho
cover Later on, Mei et al. [206] fiirther extended the call-graph-based test
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prioritization techniques via considering the method body infomiation. Ledfu
et al. [161] directly treated each test (e.g., test source code or test input) as a string
and prioritized tests to maximum string distances ofthe executed tests. The main
insight is that executing more diverse tests may have higher probability to detect
unkno-wn regression bugs. Thomas et al. [148] found that simply treating each
test as a string may include useless terms while missing important latent terms
of the test. Therefore, they proposed to further use topic model to infer the
latent semantic representation of each test. Then, they computed the string
distances between test semantic representations, and prioritized tests to execute
more diverse tests.

Although various static test-case prioritization techniques have been pro
posed, there lack extensive studies comparing different static techniques as
well as comparing static techniques against dynamic techniques. For exam
ple, the call-graph-based techniques [137, 206] were not compared against
other static techniques since there were no other static techniques before,
while the more recent topic-model-based technique was only evaluated
using only two subject systems. Therefore, recently, Luo et al. [70] performed
an extensive study on state-of-the-art static and dynamic test-case prioritiza
tion techniques using 30 modem real-world GitHub projects. The study
results show that the call-graph-based techniques outperform all the studied
dynamic and static techniques at the test-class level, while the topic-model-
based technique perfomis better than other static techniques but worse than
two dynamic techniques at the test-method level. The caU-graph-based tech
niques havq/ also been shown to incur the lowest prioritization overhead
among all the static techniques. Overall, while almost all techniques perfonn
better at the test-method level, the static techniques perfomi comparatively
worse to dynamic techniques at the test method level as opposed to the test
class level. Finally, the study results show that there is minimal overlap between
the detected faults by the static arid dynamic techniques, e.g., top 10% prior
itized tests only share less than 30% of detected faults, indicating a promising
future for applying static and dynamic test-case prioritization in tandem.

8.2.2 Block-Box \^s White-Box

Since the first proposal of test-case prioritization two decades ago [29, 67],
white-box test-case prioritization techniques have been intensively studied.
Such white-box techniques rely on the source code or dynamic execution
information (obtained via code instrumentation) of the program under test
to perform effective test-case prioritization. However, such techniques may
not be applicable when the program source code and dynamic execution
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information are not accessible or available. Furthermore, white-box tech

niques can be expensive due to the collection of dynamic execution infor
mation [137, 206]. Therefore, researchers have also proposed black-box
test-case prioritization techniques which do not require accessing source

code or perfomaing code instrumentation. Bryce and Colbourn [130,
134] proposed the first black-box test-case prioritization technique inspired
by combinatorial interaction testing (CIT). Based on the test input infomia-
tion, they adopted a "one-test-at-a-time" greedy approach to prioritize test
cases to achieve high pair-wise interactions of the test inputs faster. Bryce
et al. [115, 207] later used f-wise interaction from CIT to prioritize test cases
for GUI applications. Qu et al. [208, 209] also used the notion of CIT to
prioritize tests for the highly configurable software systems (e.g., software
product lines). Henard et al. [210] recently proposed a search-based tech
nique to prioritize the configurations for testing highly configurable soft
ware systems based on CIT.

Due to the presence of various black-box and white-box test-case pri
oritization techniques, it can be hard for the developers or testers to choose
the right technique. Therefore, recently, Henard et al. [69] systematically
studied and compared the existing white-box and black-box test-case pri
oritization techniques. They studied 20 state-of-the-art test-case prioritiza
tion techniques, including 10 white-box techniques and 10 black-box
techniques. The study was performed on six real-world C programs, widely
used ii/prior work on test-case prioritization. The study results reveal a
number of practical guidelines. First, the CIT and diversity-based techniques
perfomi the best among all studied black-box test-case prioritization
techniques. Second, although white-box techniques ouqierfomi black-box
techniques for the majority of the cases, surprisingly, the perfomiance
(in terms of APFD) difference between white-box and black-box techniques
is negUgible, e.g., at most 4% APFD difference. Third, the overlap between
the faults detected by the black-box and white-box techniques tend to be
high: the first 10% prioritized tests agree on over 60% of the detected faults.
Overall, the study provides practical guidelines that the developers or testeis
who may not have source code infomiation available can use black-box test-
case prioritization as a reHable substitute of white-box test-case prioritization

9. SOME DISCUSSIONS

In this section, we first discuss existing issues in test-case prioritization
following the previous classification and then point out some other chal
lenge problems and potential future work in test-case prioritization.
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9.1 Existing Issues

In this section, we discuss the existing issues in test-case prioritization
through three aspects—criteria, measurements, and empirical studies.

9.7.7 Criteria ^
Testing criteria are used to guide the selection of test cases in test-case pri
oritization. Most of the widely used testing criteria can be classified into two

categories, structural coverage-based criteria and mutation-based criteria.

However, these two types of testing criteria are either less precise or costly.
In particular, the structural coverage criteria (e.g., statement coverage or
branch coverage) actually measure the percentage of code elements (e.g.,
statements or branches) covered by a test case or a test suite. That is, these

coverage criteria measure the effectiveness of only test input, ignoring test
oracle [211, 212]. Therefore, such a type of criteria is less precise. On the
contradictory, mutation-based criteria tend to measure the effectiveness

of a test case or a test suite based on the output of the program. Therefore,

mutation-based criteria consider both test input and test oracle, which seem
to have higher precision than coverage-based criteria. However, mutation

testing suffers from the widely known cost issue. To sum up, neither struc
tural coverage-based criteria nor mutation-based criteria are good enough

serving as testing criteria, and thus another precise but less costly testing
criterion is needed. Recently, Zhang et al. [213] proposed predictive muta

tion testing •{PMT). The approach built predictive models based on a series
of Hghtweight features related to mutants and tests, and predicts mutant

execution results without executing the mutants. It greatly reduces the cost
of mutation testing while incurring only minor loss of accuracy, which may
provide effective but efficient supports for future test-case prioritization.

9.7.2 Measurement

First, the effectiveness measurement taken by the existing work has obvious
flaws. In the past, most of the existing work evaluated test-case prioritization
techniques based on APED [84]. However, APFD assumes that aU the tests
have the same execution time and treats them equivalently, which is usually
not true in practice. For example, for project MapDB [214], the test with the
longest running time spends 8.8*10^X more time than that with the shortest
running time. To address this measurement issue, Elbaum et al. [33] pro
posed a cost-cognizant version of APFD, APFDc, which considers different
test costs and fault severities. Since fault severities can be hard to detemiine in

practice, Epitropakis et al. [180] simplified this measurement by assuming all
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faults have the same severity. We encourage researchers to evaluate future
test-case prioritization work using APFDc or simplified APFDq to explicitly
consider test execution time. Meanwhile, APFDc "I'ly also not be suitable
for all cases, since its values are influenced by various factors like the number
of tests, the number of faults. Therefore, it is hard to use the values of such
measurements to explain the effectiveness of a prioritization technique in

different cases. To illustrate, we can hardly tell whether a prioritization tech
nique whose APFDc value is 0.7800 is good or not for a particular test suite.
Furthemiore, such measurements do not explicidy consider the actual
switching costs between test executions (e.g., time to load and schedule the
next test). In the future, we suggest researchers to also consider measuring
test-case prioritization techniques based on the actual time spent on fault detec
tion, e.g., TTFF (time to detect the first fault) and TTLF (time to detect the last
fault), since such measurements precisely measure the actual time cost during
regression testing.

Second, the efficiency measurement is mosdy ignored in test-case priori
tization, although its results influence the usage of test-case prioritization
techniques. In the past, the efficiency of test-case prioritization is mosdy eval
uated through complexity analysis rather than the actual prioritization time.
However, the complexity of some prioritization algorithms (e.g., genetic
algorithm [72]) can be hard to estimate. Furthermore, although the time com
plexity of some algorithms (e.g., integer linear programming-based algorithm
[82]) is/large, their actual prioritization time may be acceptable since the test-
case prioritization process is usually perfomied offline beforehand, i.e., before
the new version is ready. On the other hand, the efficiency of test-case prior
itization can also be crucial for some cases (e.g., version-specific test-case pri
oritization). In such cases, test-case prioritization is usually perfomied online
(e.g., after the new version is ready), making it unbearable when the prioriti
zation time is close to the time spent on test-case execution. Therefore, it
is necessary to study the end-to-end testing time (i.e., including the prioriti
zation time and the test execution time) for the online test-case prioritization
techniques.

Finally, besides the prioritization cost, it is also important to measure the
cost on collecting the necessary data required by test-case prioritization tech
niques. Most prioritization techniques require extra information besides
test cases (e.g., structural coverage) for test-case prioritization. Apparently,
obtaining such information may occur extra cost. However, many studies
simply take the infomiation as given and do not report the collection cost.
In particular, some prioritization techniques require stmctural coverage
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[84], static coverage [206], or mutation execution information on some early
version [95], Although such information is usually collected offline, i.e.,
before test-case prioritization, it still consumes computing resources and
should be measured to provide practical guidelines.

9.1.3 Empirical Studies

In the literature, existing empirical studies investigated the various factors
(e.g., programming languages [203], coverage granularity and type [203, 206],
fault type [156, 204], test granularity [95, 206], and constraints [192]) that

may influence the effectiveness and efficiency of test-case prioritization.
Besides these factors, it is also important to investigate the following (but
not limited to) factors.

Some experimental factors have been recognized as threats in the past,
e.g., subjects, faults, and test cases, but they are seldom studied. For example,
subjects are a widely recognized external factor, but the early work of test-
case prioritization (especially the papers published around 2000) mostly used
the seven small programs (whose number ofhnes of code is smaller than 600)
in Siemens as the subjects. Fortunately, this threat is reduced to some extent

after 2000, because researchers started to use larger projects, e.g.,grep andgzip
whose number of lines of code is about 10,000. Furthermore, most prior
work uses mutation faults or seeded faults, which may be a nonnegligible
threat, since there might be some gap between mutants and real faults during
software evokition. In other words, we suggest considering using real regres
sion faults in test-case prioritization.

Besides these weU-recognized threats, researchers started to notice

the difference between practice and existing experimental setup of test-case
prioritization. For example, recently Lu et al. [68] identified another one
important flawed setting in the existing evaluation, evolution of source code
and test cases. That is, previous work on test-case prioritization is usually
evaluated based on the source code and test cases with artificial changes sim
ulated via mutation testing, which do not represent real software evolution.

Lu et al. [68] investigated the influence of this factor on the effectiveness of
many existing general prioritization techniques, and found that changes on
source code do not have much influence on the effectiveness of test-case

prioritization, but changes on test code (e.g., test additions) do have.

9.2 Other Challenging Problems

Besides these issues in the current work, test-case prioritization, test-case
prioritization also suffers from other challenging problems.
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9.2.7 Intermediate/Ultimate Goal

Test-case prioritization has been studied for long, and a large number of
prioritization techniques have been proposed and investigated in the literaaire.
However, most of the prioritization techniques are less effective than the

simple greedy algorithm, such as the additional algorithm, resulting from
the difference between the ultimate goal and the intemaediate goal of test-case
prioritization. In particular, as the ultimate goal of test-case prioritization can
hardly serve to guide prioritization, existing prioritization techniques actually
use an intemaediate goal instead, and thus these "well-designed" prioritization
techniques do not optinaize the execution order of test cases in tenaas of the
ultimate goal. In recent years, researchers in test-case prioritization started
to notice this fact [72] and investigated this fact [182]. Unfortunately, no work
in the literature actually solves this problem, and it becomes a fundamental
challenge for test-case prioritization. In the future, researchers should investi
gate other intermediate goals (e.g., detection of mutation faults or detection
of similar real faults), which have closer relationship with the ultimate goal
rather than the existing intemaediate goals (e.g., structural coverage).

9.2.2 Practical Values

Test-case prioritization is a practical problem raised from industry, and thus
it is important to study test-case prioritization in practice.

Test-case prioritization aims to facilitate fault detection in software
testing^ and thus it brings more benefits when the time spent on test-case exe
cution is not ignorable (e.g., several days or months). In other words, when
the total execution time of all test cases is small (e.g., several minutes), it does
not matter so much whether a fault is detected by the first test case or the last
test case. However, to our knowledge, most of the existing research work is
actually evaluated on the subjects whose total execution time of test cases is
not large at all. That is, the existing techniques are not evaluated in its most
possible application scenario. In other word, to facilitate practical usage, it is
necessary to investigate test case prioritization in a proper practical scenario.

Besides, test-case prioritization may have variants besides its default setting-
Traditionally, test-case prioritization aims to address the test effectiveness
problem when the total execution time of test cases are long. However, m
practice, it may be cosdy to mn an individual test case. In particular, a test suite
may consist of only several test cases, each of which consumes long execution
time. Therefore, it is also interesting to study how to optimize the execution
of an individual test case, e.g., transferring a test case with long execution time
to several test cases with short execution time by modifying its components
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(e.g., test input data). Apparently, this problem is different from the existing
prioritization problem, and thus a totally new method for this problem is
needed.

Furthermore, surprisingly, to the best of our knowledge, although test-
case prioritization techniques have been studied for decades, there still lack

practical test-case prioritization tools that are effective and easy to use. For
example, despite the large number ofpapers onJUnit test-case prioritization,
there is no practical test prioritization technique fully integrated with JUnit.
To demonstrate the practical value of test-case prioritization, we encourage
the researchers to provide practical tool supports on test^case prioritization
in the near future.

In summary, although test-case prioritization has been studied for

decades, it is yet not fully explored and evaluated, leaving many future work
in this promising area. In addition, to gain practical impacts, we encourage
researchers to investigate this problem in real practical scenarios and provide
practical tool supports.

10. CONCLUSION

T o alleviate the cost of regression testing, test-case prioritization is pro
posed, which aims to achieve some testing requirements by scheduling the
execution order of test cases. This domain has been studied for decades and

dedicated efforts have been made accordingly. In this work, we conduct a sur
vey to systematically investigate the existing work on test-case prioritization.

More specifically, in this survey, we review the existing work by classifying
them into six categories: algorithms, criteria, measurements, constraints,
scenarios, and empirical studies. Based on these analyses, we further discuss
challenges, issues, and future opportunities in test-case prioritization.
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