


PRECAMBRIAN RESEARCH

http://www.elsevier.com/locate/precamres

Volume 288 CONTENTS January 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Mesoproterozoic geomagnetic reversal asymmetry in light of new paleomagnetic and geochronological data for the Häme dyke swarm, Finland: Implications for the Nuna supercontinent	
J. Salminen, R. Klein, T. Veikkolainen, S. Mertanen and I. Mänttäri	1.
The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion	
C. Zhou, S. Xiao, W. Wang, C. Guan, Q. Ouyang and Z. Chen	23
Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: A perspective review	
X. Yang, X. Lai, F. Pirajno, Y. Liu, L. Mingxing and W. Sun	39
Geochronology and geochemistry of the TTG and potassic granite of the Taihua complex, Mts. Huashan: Implications for crustal evolution of the southern North China Craton	
GD. Wang, H.Y.C. Wang, HX. Chen, B. Zhang, Q. Zhang and CM. Wu	72

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 289 CONTENTS February 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Geneses and evolutions of iron-bearing minerals in banded iron formations of >3760 to ca. 2200 million-year-old:	
Constraints from electron microscopic, X-ray diffraction and Mössbauer spectroscopic investigations S. Sun and YL. Li	1
Paleoproterozoic andesitic volcanism in the southern Amazonian craton, the Sobreiro Formation: New insights from lithofacies analysis of the volcaniclastic sequences	•
M. Roverato, C. Juliani, C.M. Dias-Fernandes and L. Capra	18
The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating	
F. Liu, L. Zhang, X. Li, A.I. Slabunov, C. Wei and T. Bader	31
New U-Pb age constraints for the timing of gold mineralization at the Pampalo gold deposit, Archaean Hattu schist belt, eastern Finland, obtained from hydrothermally altered and recrystallised zircon	
A. Käpyaho, F. Molnár, P. Sorjonen-Ward, I. Mänttäri, G. Sakellaris and M.J. Whitehouse	48
Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion	
Z. Gong, K.P. Kodama and YX. Li	62
H. Deng S. Peng A. Polet T. Kuchy, Y. Liong O. Han J. Wang V. Livens, J. Wang W. Zong and Z. Livens	
H. Deng, S. Peng, A. Polat, T. Kusky, X. Jiang, Q. Han, L. Wang, Y. Huang, J. Wang, W. Zeng and Z. Hu	75
C. Aguilar, F.F. Alkmim, C. Lana and F. Farina	95
Detrital zircon geochronology of quartzite clasts, northwest Wyoming: Implications for Cordilleran Neoproterozoic stratigraphy and depositional patterns	
D.H. Malone, J.P. Craddock, P.K. Link, B.Z. Foreman, M.A. Scroggins and J. Rappe	116
Two orogenic events separated by 2.6 Ga mafic dykes in the Central Zone, Limpopo Belt, southern Africa	
H. Xie, A. Kröner, G. Brandl and Y. Wan	120

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 290 CONTENTS March 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

P-T-t evolution of Neoarchaean to Paleoproterozoic pelitic granulites from the Jidong terrane, eastern North China Craton JS. Lu, MG. Zhai, LS. Lu and L. Zhao	1
JS. Lu, MG. Zhai, LS. Lu and L. Zhao	
Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia)	16
S. Schmid.	10
The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)	
K. Zong, R. Klemd, Y. Yuan, Z. He, J. Guo, X. Shi, Y. Liu, Z. Hu and Z. Zhang	32
Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate	
platform	
B. Basmussen, J.R. Muhling, A. Suvorova and B. Krapež	49
The evolution of a Precambrian arc-related granulite facies gold deposit: Evidence from the Glenburgh deposit, Western	
Australia	
L.K. Roche, F.J. Korhonen, S.P. Johnson, M.T.D. Wingate, E.A. Hancock, D. Dunkley, JW. Zi, B. Rasmussen,	
J.R. Muhling, S.A. Occhipiniti, M. Dunbar and J. Goldsworthy	63
Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results	
W. Yao, ZX. Li, WX. Li and XH. Li	86
A distinctive biomarker assemblage in an Infracambrian oil and source rock from western India: Molecular signatures of	
eukaryotic sterols and prokaryotic carotenoids	
S. Bhattacharya, S. Dutta and R.E. Summons	101
Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate	
R. Tostevin, T. He, A.V. Turchyn, R.A. Wood, A.M. Penny, F. Bowyer, G. Antler and G.A. Shields	113
Geochemistry of Paleoproterozoic Gunflint Formation carbonate: Implications for hydrosphere-atmosphere evolution	
P. Fralick, N. Planavsky, J. Burton, I. Jarvis, W.D. Addison, T.J. Barrett and G.R. Brumpton	126
Metamorphic <i>P-T-t</i> paths of pelitic granulites of the Taihua metamorphic complex in the Mts. Huashan area and tecto-	
nothermal implications for the Palaeoproterozoic Trans-North China Orogen	
GD. Wang, H.Y.C. Wang, HX. Chen, JS. Lu, B. Zhang, V.T. Pham, JJ. Zhang, Q. Zhang and CM. Wu	147
The Pelagonian terrane of Greece in the peri-Gondwanan mosaic of the Eastern Mediterranean: Implications for the	
The Pelagonian terraine of Greece in the pen-donawanan modulo of the Eastern measuranean for the	
geological evolution of Avalonia	163

(Contents continued on BM IV)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

CONTENTS April 2017 Volume 291

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

*	
Sequence and timing of mineral replacement reactions during albitisation in the high-grade Bamble lithotectonic domain, S-Norway	1
A.K. Engvik, F. Corfu, A. Solli and H. Austrheim	,
M. Brando Soares, A.V. Corrêa Neto, A. Zeh, A.R. Cabral, L.F. Pereira, M.G.B.d. Prado, A.M. de Almeida, L.G. Manduca, P.H.M. Silva, R.O.d.A. Mabub and T.M. Schlichta	17
Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Respond to assembly of the Columbia supercontinent	
S. Yu, J. Zhang, S. Li, D. Sun, Y. Li, X. Liu, L. Guo, Y. Suo, Y. Peng and X. Zhao	42
Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa	
J. Beghin, JY. Storme, C. Blanpied, N. Gueneli, J.J. Brocks, S.W. Poulton and E.J. Javaux	63
Geochemical evidence from marine carbonate for enhanced terrigenous input into seawater during the Ediacaran- Cambrian transition in South China	
WP. Li, YF. Zheng and YY. Zhao	83
Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil: A	
dating and isotopic study of the Kinawa migmatite B.B. Carvalho, V.A. Janasi and E.W. Sawyer	98
2.7 Ga plume associated VHMS mineralization in the Eastern Goldfields Superterrane, Yilgarn Craton: Insights from the	
low temporature and shallow water, Ag-Zn-(Au) Nimbus deposit	
S.P. Hollis, D.R. Mole, P. Gillespie, S.J. Barnes, S. Tessalina, R.A.F. Cas, C. Hildrew, A. Pumphrey, M.D. Goodz, S. Caruso, C.J. Yeats, A. Verbeeten, S.M. Belford, S. Wyche and L.A.J. Martin	119
LLPb ages and Hf. isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil	
C.I. Martínez Dopico, C. Lana, H.S. Moreira, L.F. Cassino and F.F. Alkmim	143
Western Paraná suture/shear zone and the limits of Rio Apa, Rio Tebicuary and Rio de la Plata cratons from gravity data G.N. Dragone, N. Ussami, M.E. Gimenez, F.G. Lince Klinger and C.A.M. Chaves	162
Late Palaeoproterozoic evolution of the buried northern Gawler Craton	178
R. Armit, P.G. Betts, B.F. Schaefer, K. Yi, Y. Kim, R.A. Dutch, A. Reid, L. Jagodzinski, D. Giles and L. Ailleres	170
A precise zircon Th-Pb age of carbonatite sills from the world's largest Bayan Obo deposit: Implications for timing and	
genesis of REE-Nb mineralization	202
SH. Zhang, Y. Zhao and Y. Liu	
Dating shear zones with plastically deformed titanite: New insights into the orogenic evolution of the Sudbury impact	
structure (Ontario, Canada) K. Papapaylou, J.R. Darling, C.D. Storey, P.C. Lightfoot, D.E. Moser and S. Lasalle	220
K PADADAVIOU. J.H. Darinid, C.D. Glordy, I.O. Eightiood, J.E. M. T.	

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 292 CONTENTS May 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Fennoscandia before Nuna/Columbia: Paleomagnetism of 1.98–1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications	
N.V. Lubnina, S.A. Pisarevsky, A.V. Stepanova, S.V. Bogdanova and S.J. Sokolov	1
Cambrian Series Rouge, France	40
W.J. McMahon, N.S. Davies and D.J. Went	13
paleotectonic setting of the Kédougou-Kénieba inlier, West Africa	
Q. Masurel, N. Thébaud, J. Miller and S. Ulrich	35
Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block G. Zhou, Y. Wu, H. Wang, Z. Qin, W. Zhang, J. Zheng and S. Yang	57
The ca. 1740–1710 Ma Leichhardt Event: Inversion of a continental rift and revision of the tectonic evolution of the North Australian Craton	
T.N. Blaikie, P.G. Betts, R.J. Armit and L. Ailleres	75
Revisiting the Yejishan Group of the Lüliang Complex, North China: Implications for a Paleoproterozoic active continental marginal basin in the Trans-North China Orogen	
X. Wang, W. Zhu, Y. Liu, M. Luo, R. Ge, H. Zhang, X. Ren and X. Cui	93
A multi-isotope approach towards constraining the origin of large-scale Paleoproterozoic B-(Fe) mineralization in NE	
China	115
A. Dong, Xk. Zhu, Z. Li, B. Kendall, S. Li, Y. Wang and C. Tang	115
R. Haugaard, L. Ootes and K. Konhauser	130
Pan-African accretionary metamorphism in the Sperrgebiet Domain, Gariep Belt, SW Namibia	
J.F.A. Diener, R.J. Thomas and P.H. Macey	152
Evidence for a Negarchean LIP in the Singhbhum craton, eastern India: Implications to Vaalbara supercontinent	
A. Kumar, V. Parashuramulu, R. Shankar and J. Besse	163
Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: Petrogenesis and tectonic implications	
Z. Li and C. Wei	175
Constraining timing and P-T conditions of continental collision and late overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System	
M.B. Coelho, R.A.J. Trouw, C.E. Ganade, R. Vinagre, J.C. Mendes and K. Sato	194

(Contents continued on BM II)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

Precambria Researd

http://www.elsevier.com/locate/precamres

May 2017 CONTENTS Volume 293

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Constraining timing and tectonic implications of Neoproterozoic metamorphic event in the Cathaysia Block, South China J. Yao, L. Shu, P.A. Cawood and J. Li	1
A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation	
O. Han, S. Peng, T. Kusky, A. Polat, X. Jiang, Y. Cen, S. Liu and H. Deng	13
Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader	
Reef, Witwatersrand Supergroup, South Africa S.H.J. Fuchs, D. Schumann, A.E. Williams-Jones, A.J. Murray, M. Couillard, K. Lagarec, M.W. Phaneuf and H. Vali	39
Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: Geodynamic	
implications for the Pan-African basement in Iran F. Malek-Mahmoudi, A. Reza Davoudian, N. Shabanian, H. Azizi, Y. Asahara, F. Neubauer and Y. Dong	56
Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China V. Dong, S. Sun, Z. Yang, X. Liu, F. Zhang, W. Li, B. Cheng, D. He and G. Zhang	73
LI-Ph geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the Sao Francisco Craton: Tectoric	
matches with the North China Craton and paleogeographic inferences W. Teixeira, E.P. Oliveira, P. Peng, E.L. Dantas and M.H.B.M. Hollanda	91
Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China	112
W. Yu, T.J. Algeo, Y. Du, G. Zhou, T. Wang, T. Xa, El Fadar Grogen: Insights from U-Pb zircon geochronology Linking the Windmill Islands, east Antarctica and the Albany-Fraser Orogen: Insights from U-Pb zircon geochronology	
Hand C Clark R. Laylor, C.L. Kirkland and A. Kyldhuel-Clark	131
Composition and history of giant carbonate seep mounds, Mesoproterozoic Borden Basin, Arctic Canada	150

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20-50 km. The spherules, 0.5-1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 294 CONTENTS June 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica J. Jacobs, B. Opås, M.A. Elburg, A. Läufer, S. Estrada, A.K. Ksienzyk, D. Damaske and M. Hofmann	1
The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths M.E. Schilling, R.W. Carlson, A. Tassara, R.V. Conceição, G.W. Bertotto, M. Vásquez, D. Muñoz, T. Jalowitzki,	15
F. Gervasoni and D. Morata	15
The syn-orogenic sedimentary record of the Grenville Orogeny in southwest Laurentia J.A. Mulder, K.E. Karlstrom, K. Fletcher, M.T. Heizler, J.M. Timmons, L.J. Crossey, G.E. Gehrels and M. Pecha	33
Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices	
T.M. Gallagher, N.D. Sheldon, J.L. Mauk, S.V. Petersen, N. Gueneli and J.J. Brocks	53
A tale of two basins? Stratigraphy and detrital zircon provenance of the Palaeoproterozoic Turee Creek and Horseshoe basins of Western Australia	
B. Krapež, S.G. Müller, I.R. Fletcher and B. Rasmussen	67
Neoproterozoic post-collisional extension of the central Jiangnan Orogen: Geochemical, geochronological, and Lu-Hf	
V Xin . I. Li. S. Dong, Y. Zhang, W. Wang and H. Sun	91
Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA	
F.K. Stewart and J.L. Mauk	111
Paleoproterozoic metavolcanic rocks in the Ji'an Group and constraints on the formation and evolution of the northern	
E. Meng, CY. Wang, H. Yang, J. Cai, L. Ji and YG. Li	133
Neoarchean arc magmatism and subsequent collisional orogenesis along the eastern Rae domain, western Churchill Province: Implications for the early growth of Laurentia	
S.P. Regan, M.L. Williams, K.H. Mahan, G. Dumond, M.J. Jercinovic and O.F. Orlandini	151
U-Pb and Lu-Hf isotopes of detrital zircon grains from Neoproterozoic sedimentary rocks in the central Jiangnan Orogen, South China: Implications for Precambrian crustal evolution	
J. Wang, L. Shu and M. Santosh	175
A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province	
T.J.R. Ciborowski, M.J. Minifie, A.C. Kerr, R.E. Ernst, B. Baragar and I.L. Millar	189

(Contents continued on BM IV)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

Available online at www.sciencedirect.com

http://www.elsevier.com/locate/precamres

Volume 295 CONTENTS July 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Anatomy of the Archean Anshan iron ore belt in the North China Craton: A geophysical approach LF. Xue, CQ. Dai, M. Zhu, M. Santosh and ZY. Liu	1
A predominantly ferruginous condition in the Ediacaran deep ocean: Geochemistry of black shales in the Ediacaran Doushantuo Formation, South China J. Huang, L. Feng, X. Chu, T. Sun, H. Wen, L. Qin and Y. Shen	12
Precambrian evolution of the Chinese Central Tianshan Block: Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles Z. Huang, X. Long, XC. Wang, Y. Zhang, L. Du, C. Yuan and W. Xiao	24
Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton,	
India É. Muller, P. Philippot, C. Rollion-Bard, P. Cartigny, N. Assayag, J. Marin-Carbonne, M.R. Mohan and D.S. Sarma Zircon geochronology and Hf isotopes of the Dwalile Supracrustal Suite, Ancient Gneiss Complex, Swaziland: Insights	38
into the diversity of Palaeoarchaean source rocks, depositional and metamorphic ages	48
Tracking the evolution of the Grenvillian foreland basin: Constraints from sedimentology and detrital zircon and rutile in the Sleat and Torridon groups, Scotland M. Krabbendam, H. Bonsor, M.S.A. Horstwood and T. Rivers	67
Constraints on the Ediacaran inertial interchange true polar wander hypothesis: A new paleomagnetic study in Morocco (West African Craton) B. Robert, J. Besse, O. Blein, M. Greff-Lefftz, T. Baudin, F. Lopes, S. Meslouh and M. Belbadaoui	90
Cellularly preserved microbial fossils from ~3.4 Ga deposits of South Africa: A testimony of early appearance of oxygenic life?	117
B. Kremer and J. Kaźmierczak	1.17
Asian Orogenic Belt XS. Wang, J. Gao, R. Klemd, T. Jiang, JL. Li, X. Zhang and SC. Xue	130
Geochemistry and zircon U-Pb-Hf isotopes of the late Neoarchean granodiorite-monzogranite-quartz syenite intrusions in the Northern Liaoning Block, North China Craton: Petrogenesis and implications for geodynamic processes K. Wang, S. Liu, M. Wang and M. Yan	151
Ediacaran (~620 Ma) high-grade regional metamorphism in the northern Arabian Nubian Shield: U-Th-Pb monazite ages of the Elat schist B. Elisha, Y. Katzir and A. Kylander-Clark	172

(Contents continued on BM IV)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 296 CONTENTS July 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Biomarker signatures of Sinian bitumens in the Moxi–Gaoshiti Bulge of Sichuan Basin, China: Geological significance for paleo-oil reservoirs	r
Z. Chen, B.R.T. Simoneit, TG. Wang, Y. Yang, Z. Ni, B. Cheng, B. Luo, C. Yang and T. Chen	1
Mesoproterozoic (~1.4 Ga) A-type gneissic granites in the Xilinhot terrane, NE China: First evidence for the break-up of	f
Columbia in the eastern CAOB	•
J. Han, JB. Zhou, L. Li and MC. Song	20
Paleoproterozoic Alaskan-type ultramafic-mafic intrusions in the Zhongtiao mountain region, North China Craton	
Petrogenesis and tectonic implications	•
L. Yuan, X. Zhang, Z. Yang, Y. Lu and H. Chen	39
The role of deformation in the formation of banded iron formation-hosted high-grade iron ore deposits, Hamersley	/
Province (Australia)	
M.S. Egglseder, A.R. Cruden, H.J. Dalstra and L. Nicholas	62
Crustal structure of a Proterozoic craton boundary: East Albany-Fraser Orogen, Western Australia, imaged with passive	9
seismic and gravity anomaly data	
C. Sippl, L. Brisbout, C.V. Spaggiari, K. Gessner, H. Tkalčić, B.L.N. Kennett and R. Murdie	78
An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China	
JH. Zhao, P.D. Asimow, MF. Zhou, J. Zhang, DP. Yan and JP. Zheng	93
JH. Zhao, P.D. Asimow, WF. Zhou, J. Zhang, BF. Turi and G. F. Zhong	
Large and robust lenticular microorganisms on the young Earth D.Z. Oehler, M.M. Walsh, K. Sugitani, MC. Liu and C.H. House	112
D.Z. Oehler, M.M. Walsh, K. Sugitani, WC. Liu and C.H. House Viewagay, Group, in the southern North China Craton	
Geochronology and geochemistry of the Paleoproterozoic Yinyugou Group in the southern North China Craton	•
Implications for provenance and tectonic evolution	120
Q. Sun, Y. Zhou, T. Zhao and W. Wang	
Initial breakup of supercontinent Rodinia as recorded by ca 860–840 Ma bimodal volcanism along the southeaster	
margin of the Yangtze Block, South China	148
PL. Lyu, WX. Li, XC. Wang, CJ. Pang, JX. Cheng and XH. Li	140
New U-Pb constraints on the age of the Little Dal Basalts and Gunbarrel-related volcanism in Rodinia	168
J.E. Milton, K.A. Hickey, S.A. Gleeson and R.M. Friedman.	100
Evidence for transition from a continental forearc to a collisional pro-foreland basin in the eastern Trans-Hudson Oroger	:
Detrital zircon provenance analysis in the Labrador Trough, Canada	181
R. Henrique-Pinto, C. Guilmette, C. Bilodeau and V. McNicoll	
Precambrian continental crust evolution of Hainan Island in South China: Constraints from detrital zircon Hf isotopes of	Ť
metaclastic-sedimentary rocks in the Shilu Fe-Co-Cu ore district	
S. Zou, L. Yu, D. Yu, D. Xu, T. Ye, Z. Wang, J. Cai and M. Liu	195

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 297 CONTENTS August 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Contrasting Archaean (2.85–2.68 Ga) TTGs from the Tróia Massif (NE-Brazil) and their geodynamic implications for flat to steep subduction transition	
C.E. Ganade, M.A.S. Basei, F.C. Grandjean, R. Armstrong and R.S. Brito	1
Provenance, age, and tectonic implications of Neoproterozoic strata in the Jiamusi Massif: Evidence from U–Pb ages and Hf isotope compositions of detrital and magmatic zircons	
JP. Luan, F. Wang, WL. Xu, WC. Ge, A.A. Sorokin, ZW. Wang and P. Guo	19
LA-ICP-MS elemental mapping of pyrite: An application to the Palaeoproterozoic atmosphere	
L. Zhou, C.A. McKenna, D.G.F. Long and B.S. Kamber	33
Processes of crust formation in the early Earth imaged through Hf isotopes from the East Pilbara Terrane	
N.J. Gardiner, A.H. Hickman, C.L. Kirkland, Y. Lu, T. Johnson and JX. Zhao	56
Depositional age and protoliths of the Paleoproterozoic upper Taihua Group in the Wuyang area in the southern margin of the North China Craton: New insights into stratigraphic subdivision and tectonic setting	
C. Lan, Y. Zhou, C. Wang and T. Zhao	77
Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – A window into the early eukaryote evolution	
H. Agić, M. Moczydłowska and L. Yin	101

http://www.elsevier.com/locate/precamres

Volume 298 CONTENTS September 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Wind-pattern circulation as a palaeogeographic indicator: Case study of the 1.5–1.6 Ga Mangabeira Formation, São Francisco Craton, Northeast Brazil	
M.B. Bállico, C.M.S. Scherer, N.P. Mountney, E.G. Souza, F. Chemale, S.A. Pisarevsky and A.D. Reis	1
N.M. Tucker, J.L. Payne, C. Clark, M. Hand, R.J.M. Taylor, A.R.C. Kylander-Clark and L. Martin	16
Evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition	
N.L. Teixeira, F.A. Caxito, C.A. Rosière, E. Pecoits, L. Vieira, R. Frei, A.N. Sial and F. Poitrasson	39
Late Paleoproterozoic clockwise P-T history in the Mahakoshal Belt, Central Indian Tectonic Zone: Implications for Columbia supercontinent assembly	
T. Deshmukh, N. Prabhakar, A. Bhattacharya and K. Madhavan	56
Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran	
L.V. Warren, F. Quaglio, M.G. Simões, C. Gaucher, C. Riccomini, D.G. Poiré, B.T. Freitas, P.C. Boggiani and A.N. Sial	79
Neoproterozoic active continental margin in the northwestern Tarim Craton: Clues from Neoproterozoic (meta) sedimentary rocks in the Wushi area, northwest China	
Y. Lu, W. Zhu, R. Ge, B. Zheng, J. He and Z. Diao	88
The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications	
Py. Hu, Qg. Zhai, J. Wang, Y. Tang and Gm. Ren	107
The Neoarchean-Paleoproterozoic basin development and growth of the Singhbhum Craton, eastern India and its global implications: Insights from detrital zircon U-Pb data	
K. Das, S. Bose and G. Ghosh	123
Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China	
Y. Cai, I. Cortijo, J.D. Schiffbauer and H. Hua	146
Unradiogenic strontium and moderate-amplitude carbon isotope variations in early Tonian seawater after the assembly of Rodinia and before the Bitter Springs Excursion	
A.B. Kuznetsov, A. Bekker, G.V. Ovchinnikova, I.M. Gorokhov and I.M. Vasilyeva	157
Raman geothermometry of carbonaceous material in the basal Ediacaran Doushantuo cap dolostone: The thermal history of extremely negative δ^{13} C signatures in the aftermath of the terminal Cryogenian snowball Earth	
glaciation	4-
Z. Wang, J. Wang, Y. Kouketsu, R.J. Bodnar, B.C. Gill and S. Xiao	174

(Contents continued on BM I)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

http://www.elsevier.com/locate/precamres

Volume 299 CONTENTS September 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Research Paper	
A palaeoecological model for the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni	
Basin, Mauritania, northwestern Africa	
J. Beghin, R. Guilbaud, S.W. Poulton, N. Gueneli, J.J. Brocks, JY. Storme, C. Blanpied and E.J. Javaux	1
New zircon U-Pb and Hf-Nd isotopic constraints on the timing of magmatism, sedimentation and metamorphism	
in the northern Prince Charles Mountains, East Antarctica	
X. Liu, Y. Zhao, H. Chen and B. Song	15
Neoproterozoic granitoids in the basement of the Moroccan Central Meseta: Correlation with the Anti-Atlas at the	
NW paleo-margin of Gondwana	
M. Quabid, H. Quali, C.J. Garrido, A. Acosta-Vigil, M.J. Román-Alpiste, JM. Dautria, C. Marchesi and K. Hidas	34
The jotunite of the Korosten AMCG complex (Ukrainian shield): Crust- or mantle-derived?	
I-C Duchesne I Shumlyanskyy and O.V. Mytrokhyn	58
The peraluminous Aurumina Granite Suite in central Brazil: An example of mantle-continental crust interaction in a	
Paleoproterozoic cordilleran hinterland setting?	
FA Cuadros N.F. Botelho, R.A. Fuck and E.L. Dantas	75
Early to late Ediacaran conglomeratic wedges from a complete foreland basin cycle in the southwest São	
Francisco Craton, Bambuí Group, Brazil	
G.J. Uhlein, A. Uhlein, R. Stevenson, G.P. Halverson, F.A. Caxito and G.M. Cox	101
Field and geochronological evidence for origin of the Contendas-Mirante supracrustal Belt, São Francisco Craton,	
Brazil, as a Paleoproterozoic foreland basin	
S.A. Zincone and E.P. Oliveira	117
Kinematic constraints on the Rodinia to Gondwana transition	
A.S. Merdith, S.E. Williams, R.D. Müller and A.S. Collins	132
Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and	
links with Australia and Laurentia	
J.W. Goodge, C.M. Fanning, C.M. Fisher and J.D. Vervoort	151
Petrology, pseudosection modelling and U-Pb geochronology of silica-deficient Mg-Al granulites from the Jagtiyal	
section of Karimnagar granulite terrane, northeastern Dharwar Craton, India	
D. Prakash, P. Chandra Singh, S. Tewari, M. Joshi, H.E. Frimmel, T. Hokada and T. Rakotonandrasana	177
Paleoproterozoic S-type granites from the Helanshan Complex in Inner Mongolia: Constraints on the provenance	
and the Paleoproterozoic evolution of the Khondalite Belt, North China Craton	
W. Li, C. Yin, X. Long, J. Zhang, X. Xia and L. Wang	195

(Contents continued on BM I)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

Available online at www.sciencedirect.com

http://www.elsevier.com/locate/precamres

Volume 300 CONTENTS October 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Research Paper	
The geochronological evolution of the Paleoproterozoic Baoulé-Mossi domain of the Southern West African Craton	
L.A. Parra-Avila, A.I.S. Kemp, M.L. Fiorentini, E. Belousova, L. Baratoux, S. Block, M. Jessell, O. Bruguier, G.C. Begg,	
J. Miller, J. Davis and T.C. McCuaig	1
New biostratigraphic and chemostratigraphic data from the Ediacaran Doushantuo Formation in intra-shelf and upper slope facies of the Yangtze platform: Implications for biozonation of acanthomorphic acritarchs in South China	
A.D. Hawkins, S. Xiao, G. Jiang, X. Wang and X. Shi	28
Geochemical and Nd-isotopic compositions of juvenile-type Paleoproterozoic Birimian sedimentary rocks from southeastern West African Craton (Ghana): Constraints on provenance and tectonic setting	
D.K. Asiedu, S. Asong, D. Atta-Peters, P.A. Sakyi, BX. Su, S.B. Dampare and C.Y. Anani	40
Metamorphic P-T-t evolution of Paleoproterozoic schist-hosted Cu deposits in the Zhongtiao Mountains, North China Craton: Retrograde ore formation during sluggish exhumation	
7 - I. Oiu, HR. Fan, X. Liu, KF. Yang, FF. Hu and YC. Cai	59
Geochemistry, U-Pb dating, and Lu-Hf isotopes of zircon and monazite of porphyritic granites within the Jiao-Liao- Ji orogenic belt: Implications for petrogenesis and tectonic setting	
E Liu C Liu K Itano T lizuka J. Caj and E Wang	78
Apatite and titanite from the Karrat Group, Greenland; implications for charting the thermal evolution of crust from the LI-Ph geochronology of common Pb bearing phases	
C.L. Kirkland, J. Hollis, M. Danišík, J. Petersen, N.J. Evans and B.J. McDonald	107
New Megasphaera-like microfossils reveal their reproductive strategies	
V. Zhang and Y. Zhang	141
Unusual massive magnetite veins and highly altered Cr-spinels as relics of a CI-rich acidic hydrothermal event in	
Fundal M. Magguig, A. Triantafyllou, J. Carlut, J. Berger, S. Rousse, N. Ennih and K.I.F. Irindade	151
Linking Olympic Dam and the Cariewerloo Basin: Was a sedimentary basin involved in formation of the world's	
largest uranium deposit? A.R. Cherry, J. McPhie, V.S. Kamenetsky, K. Ehrig, J.L. Keeling, M.B. Kamenetsky, S. Meffre and O.B. Apukhtina	168
The complexities of zircon crystllazition and overprinting during metamorphism and anatexis: An example from the late Archean TTG terrane of western Shandong Province, China	
C. Dong, H. Xie, A. Kröner, S. Wang, S. Liu, S. Xie, Z. Song, M. Ma, D. Liu and Y. Wan	181

(Contents continued on BM I)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

Available online at www.sciencedirect.com

http://www.elsevier.com/locate/precamres

Volume 301 CONTENTS October 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Research Paper

Nanoscale analysis of preservation of ca. 2.1 Ga old Francevillian microfossils, Gabon	
S.G. Lekele Baghekema, K. Lepot, A. Riboulleau, A. Fadel, A. Trentesaux and A. El Albani	1
Cloudina lucianoi (Beurlen & Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of	
stratigraphic distribution and biostratigraphy	
R.R. Adorno, D.A. do Carmo, G. Germs, D.H.G. Walde, M. Denezine, P.C. Boggiani, S.C. Sousa e Silva, J.R. Vasconcelos,	
T.C. Tobias, E.M. Guimarães, L.C. Vieira, M.F. Figueiredo, R. Moraes, S.A. Caminha, P.A.Z. Suarez, C.V. Rodrigues,	
G.M. Caixeta, D. Pinho, G. Schneider and R. Muyamba	19
SHRIMP zircon U-Pb dating and Hf isotope analyses of the Muniushan Monzogranite, Guocheng, Jiaobei	
Terrane, China: Implications for the tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton	
SB. Cheng, ZJ. Liu, QF. Wang, B. Feng, XL. Wei, BZ. Liu, LY. Qin, BJ. Zhao, P. Shui, L. Xu and JP. Wang	36
Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei,	
North China Craton: Records from mafic granulites	
C. Yang and C. Wei	49
Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic	
Yudongzi complex, northwestern margin of the Yangtze craton, China	
B. Hui, Y. Dong, C. Cheng, X. Long, X. Liu, Z. Yang, S. Sun, F. Zhang and J. Varga	65
Differentiation of the early silicate Earth as recorded by ¹⁴² Nd- ¹⁴³ Nd in 3.8–3.0 Ga rocks from the Anshan	
Complex, North China Craton .	
CF.Li, XC. Wang, S.A. Wilde, XH. Li, YF. Wang and Z. Li	86
Timing of collisional and post-collisional Pan-African Orogeny silicic magmatism in south-central Chad	
J.G. Shellnutt, N.H.T. Pham, S.W. Denyszyn, MW. Yeh and TY. Lee	113
Evidence for a crustal root beneath the Paleoproterozoic collision zone in the northern Ordos block, North China	
C -V Wang F Sandvol, H. Lou, X. Wang and Y. Chen	124
Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital	
zircons, and the history of the northern and central Siberian craton	
LL Paguette, D.A. Jonov, A.M. Agashev, A. Gannoun and E.l. Nikolenko	134
Geochronological constraints on the trans-Hudsonian tectono-metamorphic evolution of the pre-Athabasca	
basement within the Wollaston-Mudjatik Transition Zone, Saskatchewan	
P. Jeanneret, P. Goncalves, C. Durand, M. Poujol, P.Trap, D. Marquer, D. Quirt and P. Ledru	152

(Contents continued on BM I)

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

Available online at www.sciencedirect.com

http://www.elsevier.com/locate/precamres

18

33

50

74

94

140

150

Volume 302 CONTENTS November 2017

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Research Paper ~2.1 Ga intraoceanic magmatism in the Central India Tectonic Zone: Constraints from the petrogenesis of ferropicrites in the Mahakoshal supracrustal belt T.C. Khanna, D.V.S. Rao, M. Bizimis, M. Satyanarayanan, A.K. Krishna and V.V.S. Sai...... An integrated U-Pb, Hf, and O isotopic provenance analysis of the Paleoproterozoic Murmac Bay Group, northern

Saskatchewan, Canada C. Shiels, C.A. Partin and R.A. Stern

New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf M. Guitreau, S.B. Mukasa, L. Loudin and S. Krishnan.....

Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik Supracrustal Belt, SW Greenland M.B. Klausen, K. Szilas, T.F. Kokfelt, N. Keulen, J.C. Schumacher and A. Berger..... Prolonged anatexis of Paleoproterozoic metasedimentary basement: First evidence from the Yinchuan Basin and new constraints on the evolution of the Khondalite Belt, North China Craton

W.-(RZ). Wang, S. Gao, X. Liu, J. Hu, Y. Zhao, C. Wei, W. Xiao, H. Guo and W. Gong The composite North American Craton, Superior Province: Deep crustal structure and mantle-plume model of Neoarchaean evolution

Depth-dependent δ^{13} C trends in platform and slope settings of the Campbellrand-Malmani carbonate platform and possible implications for Early Earth oxygenation S. Eroglu, M.A. van Zuilen, H. Taubald, K. Drost, M. Wille, E.D. Swanner, N.J. Beukes and R. Schoenberg......

M.V. Mints

Hydraulic sediment penetration and seasonal growth of petalonamean basal discs from the Vendian of Ukraine J. Dzik and A. Martyshyn..... Ediacaran forebulge grabens of the southern São Francisco basin, SE Brazil: Craton interior dynamics during West

Gondwana assembly

H.L.S. Reis, J.F. Suss, R.C.S. Fonseca and F.F. Alkmim.... Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: Implications for stratigraphic correlation and sources of sedimentary organic carbon S. Xiao, N. Bykova, A. Kovalick and B.C. Gill.....

Late Neoarchean magmatism and tectonic evolution recorded in the Dengfeng Complex in the southern segment

of the Trans-North China Orogen X. Wang, X.-L. Huang, F. Yang and Z.-X. Luo

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20–50 km. The spherules, 0.5–1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470–3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe

ScienceDirect

Available online at www.sciencedirect.com

(Contents continued on BM I)

Precambria

http://www.elsevier.com/locate/precamres

CONTENTS December 2017 Volume 303

(Abstracts/contents lists published in Am. Geol. Inst. Bibliogr.; Abstr. Bull. Signaletique; Chem. Abstr.; Curr. Contents; Phys. Chem. Earth Sci., Geo Abstr.; Mineral Abstr.)

Special Issue

Archean to Proterozoic Evolution of the North China Craton

For a list of contents of this issue please see preliminary pages iv

CAPTION FOR COVER PHOTOGRAPH

3,243 million-year-old spherules in the Fig Tree Group, Barberton Greenstone Belt, South Africa, formed as a result of large meteorite impacts on the early Earth. The 35-cm-thick spherule bed (S3) is composed of nearly pure spherules produced during the condensation of an impact-produced rock vapor cloud. The estimated diameter of the bolide was 20-50 km. The spherules, 0.5-1.5 mm in diameter in the photo, include silica-(clear), phyllosilicate- (gray), and rutile/anatase-rich (black) varieties; massive and layered types; and a few originally hollow spherules. This is one of four spherule layers in the Barderton Belt, ranging from 3,470-3,243 Ma, that represent the oldest known impact deposits and provide direct evidence for a significant flux of large impactors as late as 3.2 Ga. Photograph: D.R. Lowe