
Partha Pratim Ray

Automated bug localization
in embedded softwares

A new paradigm through holistic approaches

i -f

n5.26

% P12-CL

39231

'LAMBERT
Academic Publishing

iw)" •

_T.

Partha Pratim Ray

Automated bug localization in
embedded softwares

A new paradigm through holistic approaches

ONIVf-

'/VtU-s

LAP LAMBERT Academic Publishing

Impressum/Imprint (nur fur Deutschland/only for Germany)
Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche
Nationalbibliothekverzeichnet diese Publlkatlon in der Deutschen Natlonalblbliografie;
detaillierte bibliografische Daten sind im Internet iiber http://dnb.d-nb.de abrufbar.
Aile in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen-,
marken- oderpatentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene
Warenzeichen derjeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen,
Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt
auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne
der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten waren und
daher von jedermann benutzt werden diirften.

Coverbild: www.ingimage.com

Verlag: LAP LAMBERT Academic Publishing GmbH &Co. KG
Heinrich-Bocking-Str. 6-8,66121 Saaibriicken, Deutschland
Telefon +49 681 3720-310. Telefax +49 681 3720-3109
Email: info@lap-pub!ishing.com

Approved by: Haldia,West Bengal Universityof Technology, Thesis, 2011

Hersteilung in Deutschland:
Schaltungsdienst Lange o.H.G., Berlin
Books on Demand GmbH, Norderstedt
Reha GmbH, Saarbrucken
Amazon Distribution GmbH, Leipzig
ISBN: 978-3-8484-4439-7

Imprint (only for USA, CB)
Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche
Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Intemet at httpV/dnb.d-nb.de.
Any brand names and product names mentioned in this book are subject to trademark,
brand or patent protection and are trademarks or registered trademarks of their respective
holders. The use of brand names, product names, common names, trade names, product

_descriptions etc. even without a particular marking in this works is in no way to be
construed to mean that such names may be regarded as unrestricted in respect of
trademark and brand protection legislation and could thus be used by anyone.

Coverimage: www.ingimage.com

Publisher: LAP LAMBERT Academic Publishing GmbH 8i Co. KG
Heinrich-Bocking-Str. 6-8, 66121 Saarbrucken, Germany
Phone +49 681 3720-310, Fax+49 681 3720-3109
Email: info@lap-publishing.com

Printed in the U.S.A.

Printed in the U.K. by (see last page)
ISBN: 978-3-8484-4439-7

Copyright © 2012 by the author and LAP LAMBERT Academic Publishing GmbH 8.Co. KG
and licensors /• n t
All rights reserved. Saarbrucken 2012 0 0^'

Call —.1 •*"

A»N..33..aS.l 0-1^^I ^

Additionally, I want to thank the faculties and staff of Electronics and Communication

Engineering department for all their help to complete my degree and prepare for a career

as a enthusiastic science-seeker. This includes (but certainly is not limited to) the following

individuals:

Dr. Sunandan Bhunia

He made it possible for me to have many wonderful experiences I enjoyed as a

student, including the opportunity to get in touch with the external sources of

knowledge base such as ISI, Kolkata. His believe and immense support on me

and my work encouraged to move ahead in research work. 1 want to greet a

veiy special thank to him.

Mr. Soutav Kumar Das

His constant help and faith in Embedded Systems Laboratory during last few

months provided me great support in completing my work.

And finally, I must thank my dear friends, father and mother, well wishers and obviously

Poulami Majumder, for putting up with me during the development of this work with

continuing, loving support and no complaint. I do not have the words to express all my

feelings here, only that 1 love you, all!

Place: Haldia

Date: 29"" April, 2011 Partha Pratim Ray

-^•Iditionaiiy^ I

individuals. ' "'̂ "'̂ •seeker, n,: . *'°'np'etc my degree amJ prepare fof "

"lade i(„' Possible for tn

"PPortunity "'nnderful experiences Ienjoyed as a
""" ">y '̂ orJt Koikata"

special th (q believe and immense support on ree
OB-'

'̂ natanthj,-

^"d tinallv t '"PPort [„ ^a'anis Laboratory during

"m^°'' "" •"h"!'"'" •""' """P'. WP" wi.hcr, .nd »l>«°
'"•"IP.h.,,, "•= <l=....pmc„. of .hi. ««'"

; last fe^

yi}\y

vvitP

Partha Pratim Ray

Abstract

Debugging denotes the process of detecting root causes of unexpected observable behaviors

in prograins,- such as a program crash, an unexpected output value being produced or

an assertion violation. Debugging of program errors is a difficult task and often takes

a significant amount of time in the software development life cycle. In the context of

embedded software, the probability of bugs is quite high. Due to requirements of low

code size and less resource consumption, embedded softwares typically do away with a

lot of sanity checks during development time. This leads to high chance of errors being

uncovered in the production code at ran time.

Debugging embedded softwares is a common problem. Several techniques and tools do

exist for solving this problem. However, various kinds of bugs remain untouched regarding

unauthorized and inefficient memory related issues and few bugs may also reside inside the

states of the software code. No feasible algorithm or technique has ever been developed

that will solve all the particular cases of this problem accurately.

It turns out, though, that the width of the debugging metrics are quite important in a

large number of the embedded systems having various buggy issues. This becomes readily

apparent when weleam that the bugs typically come from inaccurate debugging technique.

Any measurement of a buggy metric is limited by the precision and accuracy of the

debugging technique. Tobe of practical use, the debugging process must be reasonably ac

curate. This implies that, for most of the parts, the actual values associated with measure

ments lie within relatively narrow interval parameters or metrics such as memory, invariant

and object state. Indeed, manufacturers often guarantee the error of their softwares to be

very small.

Thus, we desire to look only at narrow interval parameters when considering the devel

opment of the methodology for debugging embedded softwares. As no such effective tech

niques exist that can solve such software problems, developing such methodologies seems

indeed promising. Therefore, the goal of this thesis is to answer the following question:

Sb.

"y ated technique or methodology be developedfor the general prob-
- "f'̂ ^bus^ngembedded.ofr.are. .ith narrow interval parameters?

coefficiems ' Problem of debugging embedded softwares with narrow interval
that win 1 . '' Mnsider it possible to develop a feasible technique
--"-ive an partieular eases Of this problem automatically.

i

Table of Contents

Page

Acknowledgements i

Abstract ill

Table of Contents v

Chapter

1 Introduction 1

2 Literature Review 3

2.1 Software Bug 3

2.1.1 Types ofBugs 3

2.1.2 Bug Handling 5

2.2 Debugging 5

2.3 Embedded System 6

2.3.1 Embedded Processors 7

2.3.2 Features of Embedded Systems 7

2.4 Embedded Software 8

2.4.1 Characteristics of Embedded Software 9

2.4.2 Embedded Software Architecture 10

2.4.3 Models of Computation 11

2.5 BusyBox 12

2.5.1 Overall View of BusyBox 13

2.5.2 Usage 13

2.5.3 Bugs in BusyBox 13

3 Related Work 17

4 Memory Error Detection 20

4.1 Valgrind 20

4.1.1 Introduction 20

V

4.1.2 Interpreting Memchecks Output 21

4.2 Bug Analysis 24

4.2.1 Analyzing the Aip Bug in BusyBox 24

4.2.2 Analyzing the Top Bug in BusyBox 24

5 Invariant Analysis 32

5.1 Introduction _ 32

5.1.1 Invariant 32

5.1.2 Program Point . 32

5.1.3 Nonsensical 33

5.2 Daikon _ _ 33

5.2.1 Introduction 33

5.2.2 Executing Daikon 34

5.3 Methodology 35

5.4 Concept of Aip Bug Behind Our Approach 38

5.5 Bug Analysis _ 3g

5.5.1 Trace File Generation _ _ 4]

5.5.2 Invariant Detection 4I

5.5.3 Invariant Comparison . 43

5.5.4 Output Analysis 43
6 Object State Incorporated Debugging-OSiD 45

6.1 Introduction

6.2 Class Dependence Graph 4g
6.3 Our Approach

6.4 Bug Localization

6.4.1 Test OOP and Other Metrics jq
6.4.2 State Chart ^
6.4.3 Stale Transition Table

6.4.4 CIdg Representation of the Test Program 53
6.4.5 Test Suite Deployment

6.4.6 State Information Comparison jg

vi

4 2 Bug Analysis

5-1 Introduction

5-I'l Invariant. .
^-'-2 Program Point
5-1-3 Nonsensical

5-2 Daikon . .

5-2-1 Introduction
^-2-2 Executing Daikon
Methodology

T"^•-2 '"variant Detection.
• '"variant Comparison

6 Obi ,

E"8 Locallaation

'"'""nation Com ""••••-^""ipatisoQ .

21

24

24

24

32

32

32

32

33

33

33

34

35

38

38

41

41

43

43

46

46

46

47

49

50

52

52

53

53

56

6-4.7 Slate Comparison Matrix -"%.-- 57

6.4.8 Source Level Bug Localization 57

7 Conclusion and Future Work 59

List of Publications 60

References 61

Vltl

Chapter 1

Introduction

Embedded softwares are the heart ofembedded systems. The development ofembedded

softwares need to undergo the process ofgeneral software development cycle, resulting in
code development and debugging as important activities. Embedded softwares typically
do away with lot of sanity checks during development time. This leads to high chance of
errors being uncovered in the production code at nm time.

In this thesis we propose a methodology for debugging errors in embedded softwares.

As acase study we have used BusyBox. de-facto standard for embedded Linux in embedded
systems and a few pseudo codes tescmbiing a few blocks of embedded BusyBox. Our first
methodology works on top ofValgrind, a popular memory error detector. Our second work
deals with invariant analysis ofsome parts ofBusyBox by Daikon, an invariant analyzer. As

out final contribution we developed a technique which incorporates object state information
into class dependence ^aph (cldg) to detect bugs in object oriented programs for embedded
softwares.

Problem Statement ; Different kinds ofdebugging techniques are available for debug

ging embedded softwares. Specific types of errors that result from memory mishandling,
unauthorized memory access etc. are very much crucial to embedded softwares in respect of
bug intrusion, that must be detected well at the time ofdevelopment. Bugs can penetrate
into softwares through other ways also. But the existing approaches to detect the above
said bugs, are unable to execute its job satisfactorily. Hence the need for developing new
debugging methodologies aroused-

" s

l:>"i

Organization : This thesis '
regarding various aspects f follows. Chapter 2presents literature review
'heir features. Chapter 3 systems and embedded software and
raemoiy enor detection Cha t ^0'̂ : on this matter. Chapter 4presents the
state incorporated debugging te '' invariant analysis. Chapter 6presents object
^wks, ®technique. Chapter 7 presents future work and concluding

Chapter 2

Literature Review

2.1 Software Bug

A software bug [40] is an error, flaw, mistake, undocumented feature that prevents it

from behaving as intended (e.g. producing an incorrect result). Most bugs arise due to

mistakesand errors made by the programmer, either in the program source code or its

design, and a few are caused by compilers producing incorrect code. A program that

contains a large number ofbugs, and orbugs that seriously interfere with its functionality, is

said to be buggy. Reports detailing bugs in a program are commonly known as bug
reports, fault reports or problem reports.

2.1.1 Types of Bugs

1. Type I error [39], also known as an error of the first kind, an a error, or a fiilse
positive; the error of rejecting a null hypothesis when it is actually true. It occurs

when we are observing a difference when intruth there isnone, thus indicating a test of

poor speciflction. Type I error can be viewed as the error ofexcessive credulity [46] or

even hallucination.

2. Type II error [39], also known as an error of the second kind, a p error, or a ftlse
negative; the error of failing to reject a null hypothesis when in fact we should have

rejected it. In other words, this is the error offailing to observe a difference when in
truth there is one, thus indicating a test of poor sensitivity. Type II error can be

viewed as the error of excessive skepticism [47]or myopia.

'he proerammer can be ama'
«ft-are debugging varies ^

on .he '̂ PP'Pie-ity of the system, and also depends, to
-^^buggers. Defaugg,^ J® '̂ "euage(s) used and the available tools, snch as

which enable the programmer .o monitor the
.. r ii, re-starf;.

lernoty-^ [41]. high.,eve, pro " change values in t
tbey have features ' ®"oh as Java, make debugs

T!"'»p~g,J'~k=•»»""
• ^ jnit'^

of errat"
cafss

—" to spot. In pro„3„ . ' "•*"P""8 that make real

-P .4:"°"' " C ..se„.„

^debugger tools may be needed,

Eobedded System

».pto 1! ' ' «" «Wm, Z """ " '="•»» PPP o, . few
compm Tdembedded as part oft

today [27] ^ Embedded system "®*'b'e and to meet

taracteristics Of embedded svst'""'™' in common
•^-bedded systems are de. ^re [243:

-"Zrr^" be ageneral-

memory chips. firmware.

where the

a

use

•i!

SCFTWARE

fPQAJ MEMCflY

fiJO
CONS^RSCN

HUMAN

INTERFACE

OtAQNOSTIC
PCfiT

GLECTPCMECHANICAL
PACM.'P & SAFETY

EXTIrRNAL

ENVtRONMern

ccr^SaoN -hAcmjATcre

ALMUARV
SYSTEMS
<PCWEn,

COXING)

Figure 2-1: An embedded system encompasses the CPU as well as many other resources.

2.3.1 Embedded Processors

Embedded processors can be broken into two broad categories: ordinary microprocessors
(gP) and microcontrollers (pC). which have many more peripherals on chip, reducing cost
and size. There are Von Neumann as well as various degrees ofHarvard architectures.
RISC as well as non-RISC and VLIW types of processors are available in market. Few of
these are: 65816. 65C02. 68HC0S. 68HC11. 68k. 78KOR/78KO, 8051. ARM. AYR, AVR32.
Blackfin, C167, Coldfire. C0P8. Coitus APS3, eZ8, eZ80. FR-V. H8. HT48. M16C, M32C,
MIPS. MSP430, PIC. PowerPC. R8C. RL78. SHARC, SPARC. ST6, SupcrH, TLCS-47.
TLCS-870, TLCS-900, Tricore, V850. x86. XE8000, Z80, AsAP etc.

2.3.2 Features of Embedded Systems

The figure 2.1 illustrates the peripheral environment of an embedded processor as well as a
construction of abasic embedded system. Embedded systems are very much accustomed

I

ormational systems, which simply take abody of input
mio abody of output data.

data and transform it

^•4.2

Embedded software contain,
feature of important measure, such as (24):

• Simple control loop ;i„ ,i,i, •
subroutines, ejei, '̂'8". the software simply has a loop. The loop

. , , ®f 'he hardware or software., . " f**" <" the hardware or sol
'"♦^ntpt conctoued system c
rupt conitollei ibis means 'tnhedded systems are predominantly
differentkindsofevents, Performed by the system are trise=«d

calls

inter-

by

^««ve mnititaskin, „
ŝimple control loop multitasking system is very

Preemptive multitagkin
between tme-n- . . ® .

similat

itches

utasl^j^g .j

or threads based onl^ "low-,eve, piece of code S.i
Microand Exr, i.^ " ^""necteri"o-kernei -a >.• ®u interrupt).
Thp ,„..,i . •^®«:toV.~-..

>^-~and Exo-kerrtel-^p,.
The usual arrangement «aio.
switches the CPU to d<t ®reui-time OS
when the task switching "f e!l allocates memory

'̂ow. Exo-kcmels cemmuratHl '̂''
^«ic kernels .n tp- ^
hiiitio.;- -, 't case . '"Outing calls

-ciiKie
•^""ohthic kernels-,nth-

Exotic custom operaf "" '̂""""cnt sophisticated

architectures. ''̂ havior ^"on .f
"""""ainahie systems

10

'*hle
the one of the 3

cap"'

mire
red

,boV«

J

2.4.3 Models of Computation

There are many models ofcomputation, each dealing with concurrency and time in diRcrent

ways. Here we outline some of the most useful models for embedded software [37],

I. Dataflow ; in dataflow models, actors are atomic (indivisible) computations that

are triggered by the availability of input data. Connections between actors represent

the flow of data from a producer actor to a consumer actor,

2. Time Triggered :Some systems with timed events are driven by clocks, which are

signals with events that are repeated indefinitely with a fixedperiod.

3. Synchronous/Reactive :In the synchronous/reactive (SR) model of computation,

connections between components represent data values that are aligned with global

clock ticks, as with time-triggered approaches [37].

4, Rendezvous :In synchronous message passing, the components are processes, and

processes communicate in atomic, instantaneous actions called rendezvous. If two

processes are to communicate, and one reaches the point first at which it is ready to

communicate, then it stalls until the other process is ready to communicate.

5. Finite State Machines :A11 [37] of the models of computation considered so far are

concurrent. It is often useful to combine these concurrent models hierarchically with

finite-state machines (FSMs) to get modal models. FSMs arc different from any of the

models we have considered so far in that they are strictly sequential. A component in

this model is called a state or mode, and exactly one state is active at a time. The

connections between states represent transitions, or transfer of control between states.

Execution is a strictly ordered sequence of state transitions. Transition systems are a

more general version, in that a given component may represent more than one system

state (and there may be an infinite number of components).

11

2.5 BusyBox

In this text we have experimented on BusyBox [22], a de-facto standard for Linux in

emebedded systems. BusyBox is a fairly comprehensive set of programs needed to run a

Linux system. Moreover it is the de-facto standard for embedded Linux systems, providing

many standard Linux utilities, but having small code size (size of executables), than the

GNU Core Utilities. BusyBox provides compact replacements for many traditional full

blown utilities found on most desktop and embedded Linux distributions. Examples include

the le utilities such as Is, cat, cp, dir, head, and tail. BusyBox also providessupport for more

complex operations, such as ifcong, netstat, route, and other network utilities. BusyBox is

remarkably easy to configure, compile, and use, and it has the potential to significantly

reduce the overall system resources required to support a wide collection of common Linux

utilities. BusyBox in general case can be built on any architecture supported by gcc.

BusyBox is modular and highly configurable, and can be tailored to suit particular

requirements. The package includes a configuration utility similar to that used to configure

the Linux kernel. The commands in BusyBox are generally simpler implementations than

their full-blown counterparts. In some cases, only a subset of the usual command line

options is supported. In practice,however, the BusyBox subset of command functionality is

more than sufficient for most general embedded requirements. °

The BusyBox bundle functions as a single executable where the different utilities are

actually passed on at the command line for separate invocation. It is not possible to build

the individual utilities separately and run them stand alone. For example, for nmning the

arp utility, we need to invoke BusyBox as busybox arp-Ainet and record the execution trace.

Since we work on the binary level, the buggy implementation for us is the BusyBox binary,

which has a large code base (about 121000 lines of code).

12

[. [[. acpid, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk,
basenatnc, beep, blkid, brctl, bunzip2, bzcat, bzip2, cal, cat, catv, chat,
chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksuin,

clear, ctnp, conn, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date,

dc, dd, deallocvt, delgroup, deluser, depmod, devmen, df, dhcprelay, diff,
dimame, dnesg, dnsd, dnsdomainname, dos2unix, du, dunpkmap, dunpleases,

echo, ed, egrep, eject, env,.envdir, envuidgid, ether-wake, expand, expr,

fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgrep, find,

findfs, flash.eraseall, flash_lock, halt, hd, hdpam, head, hexdump,

hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave,

ifplugd, ifup, inetd, init, inotifyd, logread, losetup, Ipd, Ipq, Ipr, Is,

Isattr, Ismod, Ispci, Isusb, Izmacat, Izop, Izopcat, makedevs, makemime,

man, mdSsum, mdev, patch, pgrep, pidof, ping, ping6, pipe_progress,

pivot_root, pkill, popmaildir, poweroff, printenv, printf, ps, pscan, pwd,

raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath,

reboot, refomime, renice, reset, resize, im, rmdir, nmnod, route, rpm,

rpm2cpio, rtcwake, run-parts, runlevel, runsv, • runsvdir, rx, script,

scriptreplay, sed, sendnail, seq, setarch, setconsole, setfont,

setkeycodes, setlogcons, setsid, setuidgid, sh, shalsum, sha2S6sun,

sha512sum, showkey, slattach, sleep, softlimit, sort, split, ostart-stop-

daemon, stat, strings, stty, su, sulogin, sun, sv, svlogd, swapoff,

swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset,

tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, uudecode, uuencode,

vconfig, vi, vlock, volname, wall, watch, watchdog, wc, wget, which, who,

whoami, xargs, yes, zcat, zcip, msh, mt, nv etc.

Figure 2.2: The commands incorporated in BusyBox version-1.16.0.

14

• buildroot--A configurable means for building users' own busybox/

uClibc based system systems, maintained by the uClibc developers

• OpenWrt--A Linux distribution for embedded devices, based on

buildroot

• Tiny Core Linux—A very small minimal Linux GUI Desktop

• PTXdist—Another configurable means for building your own busybox

based systems

• Debian installer (boot floppies) project

• Red Hat installer

• Slackware Installer

• Gentoo Linux install/boot CDs

• The Mandriva installer

• Linux Embedded Appliance Firewall—The sucessor of the Linux Router

Project, supporting all sorts of embedded Linux gateways, routers,

wireless routers, and firewalls

• Build Your Linux Disk

• AdTran - VPN/firewall VPN Linux Distribution

• mkCDrec - make CD-ROM recovery

• Partition Image

• Familiar Linux—A Hnux distribution for handheld computers

" Netstation

• GNU/Fiwix Operating System

• TimcSys real-time Linux

• MoviX—Boots from CD and automatically plays every video file on the

CD

• Salvare—More Linux than tomsrtbt but less than Knoppix, aims to

provide a useful workstation as well as a rescue disk and many more.

Figure 2.3: List of projects that use the BusyBox.

15

* Galaxy MGB4500 Raid Pro NAS

* StoryBox Ultimate uses BusyBox vl.1.3 1
i

*Western Digital's ShareSpace network attached storage device |
* RD129 embedded board from ELPA !

* EMTEC MovieCube R700 uses BusyBox 1.1.3 i

* The Kerbango Internet Radio <

* LinuxMagic VPN Firewall

* Cyclades-TS and other Cyclades products

* Linksys WRT54G - Wireless-G Broadband Router

* Dell TnieMobile 1184

* NetGear WG602 wireless router with sources here

* ASUS WL-300g Wireless LAN Access Point with source here

* Belkin S4g Wireless DSL/Cable Gateway Router with source here

* Acronis PartitionExpert 2003

* U.S. Robotics Sureconnect 4-port ADSL router with source here

* ActionTec GT701-WG Wireless Gateway/DSL Modem with source here

* DLink—Model GSL-G604T, DSL-300T

* Siemens SESIS DSL router

* Free Remote Windows Terminal

* ZyXEL Routers etc.

Figure 2.4: List of products that use the BusyBox.

16

