000 04658cam a2200493 i 4500
001 on1305912625
003 OCoLC
005 20250612155524.0
006 m o d
007 cr |n|||||||||
008 220326t20222022ne a ob 001 0 eng d
040 _aYDX
_beng
_erda
_cYDX
_dOPELS
_dOCLCO
_dEBLCP
_dAFU
_dN$T
_dOCLCF
_dSFB
_dOSU
_dOCLCQ
_dOCLCO
_dOCLCQ
_dUKKRT
_dOCLCQ
019 _a1305438600
_a1306021844
020 _a9780128187227
_q(electronic bk.)
020 _a0128187220
_q(electronic bk.)
020 _z9780128187210
_q(print)
020 _z0128187212
_q(print)
035 _a(OCoLC)1305912625
_z(OCoLC)1305438600
_z(OCoLC)1306021844
050 4 _aQB602.95
_b.M33 2022
082 0 4 _a523.20285631
_223
245 0 0 _aMachine learning for planetary science /
_cedited by Joern Helbert, Mario D'Amore, Michael Aye, Hannah Kerner.
264 1 _aAmsterdam :
_bElsevier,
_c2022.
264 4 _c�2022
300 _a1 online resource (xvi, 216 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
505 0 _aFront Cover -- Machine Learning for Planetary Science -- Copyright -- Contents -- Contributors -- Foreword -- References -- 1 Introduction to machine learning -- 1.1 Overview of machine learning methods -- 1.2 Supervised learning -- 1.2.1 Classification -- 1.2.2 Regression -- 1.3 Unsupervised learning -- 1.3.1 Clustering -- 1.3.2 Dimensionality reduction -- 1.4 Semisupervised learning -- 1.4.1 Self-training -- 1.4.2 Self-training with Expectation Maximization -- 1.4.3 Cotraining -- 1.5 Active learning -- 1.5.1 Uncertainty sampling -- 1.5.2 Query-by-committee
505 8 _a1.6 Popular machine learning methods -- 1.6.1 Principal component analysis -- 1.6.2 K-means clustering -- 1.6.3 Support vector machines -- 1.6.4 Decision trees and random forests -- 1.6.5 Neural networks -- 1.7 Data set preparation -- References -- 2 The new and unique challenges of planetary missions -- 2.1 Introduction -- 2.1.1 50 years of Mercury exploration -- 2.1.2 Challenges of large and complex data return -- 2.1.3 Facing the unknown -- 2.1.4 Machine learning for planetary science -- References -- 3 Finding and reading planetary data -- 3.1 Data acquisition in planetary science
505 8 _a3.1.1 Introduction -- 3.1.2 Data processing levels -- 3.1.3 PDS -- 3.1.3.1 Organizational structure within a node -- Releases and volumes -- EDR and RDR -- PDS4 collections and bundles -- 3.1.4 ESA's Planetary Science Archive -- 3.1.5 Reading data with Python -- 3.1.5.1 Example reading of PDS3 data -- 3.1.5.2 Troubleshooting data reading -- 3.1.6 Spaces to watch -- 3.1.6.1 PDR -- 3.1.6.2 PlanetaryPy -- 3.1.6.3 OpenPlanetary -- 4 Introduction to the Python Hyperspectral Analysis Tool (PyHAT) -- 4.1 Introduction -- 4.2 PyHAT library architecture -- 4.3 PyHAT orbital
505 8 _a4.3.1 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) -- 4.3.2 Moon Mineralogy Mapper (M3) -- 4.3.3 Kaguya Spectral Profiler -- 4.4 PyHAT in-situ -- 4.4.1 Baseline removal example -- 4.4.2 Regression analysis example -- 4.4.3 Data exploration example -- 4.4.4 Calibration transfer -- 4.5 Conclusion -- Acronyms -- Acknowledgments -- References -- 5 Tutorial: how to access, process, and label PDS image data for machine learning -- 5.1 Introduction -- 5.2 Access to PDS data products -- 5.2.1 PDS Image Atlas -- 5.2.2 PDS Imaging Node Data Portal
505 8 _a5.3 Preprocessing PDS data products into standard image formats -- 5.3.1 PDS image data products -- 5.3.2 PDS browse images -- 5.3.3 Converting PDS image data products -- 5.4 Labeling image data -- 5.4.1 Publicly available labeled image data sets -- 5.4.2 Tools for labeling image data -- 5.5 Example PDS image classifier results -- 5.5.1 Train, validation, and test sets -- 5.5.2 Model fine-tuning -- 5.5.3 Model calibration and performance -- 5.5.4 Access to HiRISENet classification results -- 5.6 Summary -- Acknowledgments -- References
650 0 _aPlanetary science
_xData processing.
_934488
650 0 _aMachine learning.
700 1 _aHelbert, Joern,
_eeditor.
_934489
700 1 _aD'Amore, Mario,
_eeditor.
_934490
700 1 _aAye, Michael,
_eeditor.
_934491
700 1 _aKerner, Hannah,
_eeditor.
_934492
776 0 8 _iPrint version:
_z0128187212
_z9780128187210
_w(OCoLC)1144876456
776 0 8 _iPrint version:
_tMachine learning for planetary science
_z9780128187210
_w(OCoLC)1285702618
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780128187210
999 _c216576
_d216576