000 00365nam a2200145Ia 4500
999 _c164008
_d164008
020 _a9788181477866
040 _cCUS
082 _a530
_bLAN /
100 _aLandau, L. D.
245 0 _aMechanics/
_cL.D. Landau
260 _aOxford:
_bElsevier,
_c2005.
300 _axxvii-170 p.
_bill.
_c25 cm.
505 _aI. THE EQUATIONS OF MOTION §1. Generalised co-ordinates §2. The principle of least action §3. Galileo's relativity principle §4. The Lagrangian for a free particle §5. The Lagrangian for a system of particles II. CONSERVATION LAWS §6. Energy §7. Momentum §8. Centre of mass §9. Angular momentum §10. Mechanical similarity III. INTEGRATION OF THE EQUATIONS OF MOTION §11. Motion in one dimension §12. Determination of the potential energy from the period of oscillation §13. The reduced mass §14. Motion in a central field §15. Kepler's problem IV. COLLISIONS BETWEEN PARTICLES §16. Disintegration ofparticles §17. Elastic collisions §18. Scattering §19. Rutherford's formula §20. Small-angle scattering V. SMALL OSCILLATIONS §21. Free oscillations in one dimension §22. Forced oscillations §23. Oscillations of systems with more than one degree of freedom §24. Vibrations of molecules §25. Damped oscillations §26. Forced oscillations under friction §27. Parametric resonance gg §28. Anharmonic oscillations §29. Resonance in non-linear oscillations §30. Motion in a rapidly oscillating field VI. MOTION OF A RIGID BODY §31. Angular velocity §32. The inertia tensor §33. Angular momentum of a rigid body §34. The equations of motion of a rigid body §35. Eulerian angles HO §36. Euler's equations §37. The asymmetrical top §38. Rigid bodies in contact §39. Motion in a non-inertial frame of reference VII. THE CANONICAL EQUATIONS §40. Hamilton's equations §41. The Routhian §42. Poisson brackets §43. The action as a function of the co-ordinates §44. Maupertuis' principle §45. Canonical transformations * §46. Liouville's theorem §47. The Hamilton-Jacobi equation §48. Separation of the variables §49. Adiabatic invariants §50. Canonical variables §51. Accuracy of conservation of the adiabatic invariant §52. Conditionally periodic motion Index
650 _aAnalytic mechanics
942 _cSC79