000 00391nam a2200133Ia 4500
999 _c153675
_d153675
020 _a9783639112764
040 _cCUS
082 _a551.21
_bJAN/G
100 _aJanssen, Volker
245 _aGPS-based volcano deformation monitoring: a mixed-mode network processing approach/
_cVolker Janssen
260 _aGermany:
_bVDM Verlag,
_c2008.
300 _aviii, 144 p. :
_bill. ;
_c22 cm.
505 _aChapter 1: Introduction 1.1 Volcanoes and their Hazards 1.1.1 Volcanoes 1.2.2 Volcanic Hazards 1.2 The Global Positioning System 1.3 The GPS Measurements 1.3.1 Pscudorange Observation 1.3.2 Carrier Phase Observation 1.4 Error Sources in GPS Positioning 1.4.1 Orbit Bias 1.4.2 Clock Bias 1.4.3 Ionospheric Delay 1.4.4 Tropospheric Delay 1.4.5 Multipath 1.4.6 Antenna Phase Centre Offset and Variation 1.5 Motivation 1.6 Methodology 1.7 Outline of this Book 1.8 Contributions of this Research Chapter 2: Volcano Deformation Monitoring with GPS 2.1 Introduction 2.2 Volcano Deformation Monitoring 2.3 Volcano Deformation Monitoring using GPS 2.3.1 Large Scale PermanentGPS Networks 2.3.2 Small Scale Permanent GPS Networks 2.4 A Continuous Low-Cost GPS-Based Volcano Deformation Monitoring System in Indonesia 2.5 A Mixed-Mode GPS Network for Volcano Deformation Monitoring 2.5.1 February/March2000 Deployment 2.5.2 July 2001 Deployment 2.5.3 Data Processing Strategy 2.5.4 Starling Coordinates Chapter 3:Optimising the Number of Double-Differenced Observations for GPS Networks in Support of Deformation Monitoring Applications 3.1 Introduction 3.2 Generating an Independent Set of Double-Differences 3.3 Optimising the Double-Differencing Operator 3.4 Multi-Baseline Processing versus Baseline-By-Baseline Processing \ 3.5 Ambiguity Resolution 3.6 Numerical Example 3.7 Concluding Remarks Chapter 4: Ionospheric Corrections to Improve GPS-Based Volcano Deformation Monitoring 4.1 Introduction 4.2 Sunspot Number and the Solar Cycle 4.3 The Ionosphere 4.4 Ionospheric Corrections for Dual-Frequency Users 4.5 Mixed-Mode GPS Network Processing Approach to Account for the Ionospheric Effect 4.5.1 Single-Differcnced Model 4.5.2 Double-Differenced Model 4.5.3 Extended Model for Multiple User Receivers 4.6 Analysis of the Empirically-Dcrived Correction Terms 4.6.1 The L4 Linear Combination 4.6.2 Analysis of Field Data Collected at Mid-Latitudes 4.6.3 Analysis of Field Data Collected in DifTerent Geographical Regions 4.6.4 Analysis of Field Data Collected at the Mt. Papandayan Volcano in 2000 & 2001 4.7 Concluding Remarks Chapter 5: Data Processing and Analysis 5.1 Introduction 5.2 SC1GN 2000 5.2.1 Ionospheric Corrections for the Fiducial Baselines 5.2.2 Ionospheric Corrections for the Inner Baselines 5.2.3 Baseline Results 5.2.4 Summary 5.3 Hong Kong 2000 5.3.1 Ionospheric Corrections for the Fiducial Baselines 5.3.2 Ionospheric Corrections for the Inner Baselines 5.3.3 Baseline Results 5.3.4 Summary 5.4 Malaysia / Singapore 2001 5.4.1 Ionospheric Corrections for the Fiducial Baselines 5.4.2 Ionospheric Corrections for the Inner Baseline 5.4.3 Baseline Results 5.4.4 Summary 5.5 Papandayan 2001 5.5.1 Ionospheric Corrections for the Fiducial Baselines 5.5.2 Baseline Results 5.5.3 Summary 5.6 Detection of Abnormal Deformation 5.7 Concluding Remarks Chapter 6: Summary and Conclusions 6.1 Summary 6.1.1 Deployment ofa Mixed-Mode GPS Network atGunung Papandayan 6.1.2 Optimising the Number ofDouble-Differenced Observations 6.1.3 Investigation ofthe Empirically-Derived Correction Terms 6.1.4 Mixed-Mode GPS Network Processing 6.1.5 Real-Time Monitoring and Visualisation of Baseline Results 6.2 Suggestions and Recommendations for Future Research References. Appendix: The November 2002 Eruption at Gunung Papandayan
650 _aVolcano
942 _cWB16