Behavior of landfill systems under monotonic and earthquake loading/ Indrasenan Thusyanthan

By: Thusyanthan, IndrasenanMaterial type: TextTextPublication details: Saarbrucken: VDM Verlag, 2008Description: xii, 272 p. : ill. ; 22 cmISBN: 9783639030990Subject(s): EarthquakeDDC classification: 551.22
Contents:
CHAPTER I I. INTRODUCTtON. 1.1. Typical landfill and configurations components 1.2. Regulatory framework controlling landfills 1.3. Relgulations on landfill siting, design and operations . 1.4. Failure of landfills 1.5. Objectives of the research 1.6. Layout of the thesis CHAPTER 2 3. REVIEW OF LITERATURE. 3.1. Engineering properties of municipal solid waste 1.1.1. Unit weight 3.1.2. Compressibility 3.1.3. Shear strength characteristics 3.1.4. Moisture content 3.1.5. Porosity 3.1.6. Hydraulic conductivity 3.1.7. Dynamic prpperties 3.2. Liner systems of landfills 3.2.1. Compacted Clay liner (CCL) 3.2.3. Geomembranes (GM) 3.2.3. Geosynthetic clay liners (GCL) 3.2.4. Stability of liners 3.2.5. Previous work on clay liner deformation 3.3. Seismic analysis of landfills 3.3.1. Landfill response to seismic motion 3.3.2. Summary of numerical response analyses 3.3.3. Landfill stability and deformation 3.3.4. Earthquake-induced displacements and validity of decoupled approach 3.3.5. Comparion between one-and two-dimensional seismic analysis 3.4. Landfill performance during past earthquakes 3.4.1. Whittier narrows earthquake 3.4.2. Loma Prieta earthquake 3.4.3. Northridge earthquake 3.4.4. Summary CHAPTERS 3 2. CENTRIFUGE MODELLING TECHNIQUE 2.1. Introduction 2.2. Scaling LAWS 2.3. Centrifuge and data acquisition 2.4. Centrifuge model container and instruments 2.4.1. Equivalent shear beam (ESB) box and laminar box 2.4.2. Accelerometers 2.4.3. Pore Pressure Transducers (PPTs) 2.4.4. Linearly varying differential transformers (LVDT) and Laser. 2.4.5. Pressure cells 2.4.6. Load cell 2.4.7. Viscometer 2.5. Centrifuge modelling of landfill components 2.5. Municipal Solid Waste (MSW) 2.5.2. Clay liner. 2.5.3. Geomembrane 2.6. Test programme 2.7. Model preparation techniques and centrifuge testing 2.7.1. Model preparation 2.7.2. Dynamic Testing 2.8. Preliminary centrifuge test 2.8. Shear wave velocity of model waste 2.8.2. Post-test observations 2.8.3. Particle Image Velocimetry (PtV) analysis 2.8.4. Model waste settlement 2.9. Summary CHAPTER 4 4. SEISMIC BEHAVIOUR OFMUNICIPAL SOLID WASTE (MSW) LANDFILLS........ 4.1. Introduction 4.2. Development of a model municipal solid waste for use in centrifuge testing 4.2J. Physical modelling of municipal solidwaste 4.2.2. Preparation of model waste 4.3. Physical properties of model waste mixtures 4.3.I. Unit weight 4.3.2. Compressibility 4.3.3. Shear strength 4.3.4. Particle size distribution 4.3.5. Choice of model waste. 4.4. Dynamic properties of model waste 4.4.1. Model preparation and testing 4.4.2. Shear wave velocity 4.4.3. Amplification of acceleration in model waste 4.4.4. Evaluation ofshear modulus and damping curves 4.4.5. Calculation of Shear modulus 4.4.6. Stress-strain loops and Shear modulus 4.4.7. Calculation of Equivalent Damping Ratio 4.4.8. Appropriate Data Filtering 4.4.9. Validity and limitations of the use of model waste 4.5. Seismic behaviour of " above and below ground fill" type landfills 4.5.1. Amplification of acceleration through the landfill 4.5.2. Deformations due to seismic loading 4.5.3. Post test observation of IT03 4.6. SEismic behaviour of " area fill" type landfill 4.6.1. Amplification of acceleration through the landfill 4 6.2 Deformations due to seismic loading 4 7. Frequency response of MSW landfills 4 8 Discussion: seismic analysis of MSW landfills 4.9. Summary CHAPTER 5 5 TENSILE BEHAVIOUR OF GEOMEMBRANES ON LANDFILL SLOPES UNDER STATIC AND DYNAMIC LOADING 5.1. Introduction 5.2. Theory 5 3 Modelling geomembrane 5.3.1. Matching stress-strain characteristics of real geomembranes 5.3.2. Matching interface friction angle of a real geomembrane 5.4. Tension measuring setup 5 5 Centrifuge testing (IT04 and IT06) 5.4.1. Model preparation for tests IT04 & IT06 5.6. Testing procedure 5.7. Tension in geomembrane due to static loading 5.7.1. Results from test IT04 - a completed landfill 5.7.2. Results from test IT06 - a landfill cell 5.7.3. Discussion 5.8. Tension in geomembrane due to earthquake loading 5.8.1. Results from test IT04 - a completed landfill 5.8.2. Results from test IT06 - a landfill cell 5.8.3. Discussion 5.9. Post test observations 5.10. Normal stresses on the side slopes 5.11. Summary CHAPTER 6 3. INTEGRITY OF LANDFILLS FOUNDED ON LIQUEFIABLE FOUNDATION UNDER EARTHQUAKE LOADING 3.1. Introduction 1.1. Definition of liquefaction 3.2. Centrifuge testing 3.2.1. Model preparation 3.2.2. Model earthquakes 3.3. Completed MSW landfill with geomembrane/clay liner (test IT05) 3.3.1. Acceleration 3.3.2. Excess pore pressure generation and dissipation 3.3.3. Surface soil and waste settlements during earthquake loading 3.3.4. Tension in the geomembrane 3.3.5. Observations during and after test IT05 3.4. Completed MSW landfill with single clay liner (test IT07) 3.4.1. Accelerations 3.4.2. Excess pore pressure generation and dissipation 3.4.3. Surface soil and clay liner movements 3.4.4. Observations during and after the test IT08 3.5. Active MSW landfill with single clay liner (test IT08) 3.5.1. Acceleration 3.5.2. Excess pore pressure generation and dissipation 3.5.3. Surface soil and clay liner movements 3.5.4. Observations during and after test IT08 3.6. Discussion 3.6.1. Acceleration 3.6.2. Excess pore pressure 3.6.3. Clay liner movements and damage 3.7. Summary CHAPTER 7 6. CRACKING IN CLAY LINERS 6.1. Introduction 6.2. Experimental setup 6.2.1. Specimen preparation 6.2.2. Installation of PPTTs into the clay beams 6.3. Testing procedure 6.3.1. PIV analysis 6.4. Results 6.4.1. Longitudinal strain at mid-span of the beam 6.4.2. Other strain components 6.4.3. Position of neutral axis 6.4.4. Bending moment vs curvature 6.4.5. Pore pressure measurments 6.4.6. Stress distribution in the beam 6.4.7. Stress paths 6.4.8. Extreme fibre stress vs strain 6.5. Tensile strength of extreme fibre 6.6. Strain criteria for crack initiation 6.7. Discussion 6.8. Summary CHAPTER 8 4. PRACTICAL IMPLICATIONS 4.1. Introduction 4.2. Amplification potential of MSW landfill 4.3. Acceleration transfer through clay/geomembrane interface 4.4, Tension in geomembrane on landfill side slopes 4.4.1. Static loading 4.4.2. Dynamic loading(earthquake loading) 4.5, Cracking in clay liners 4.6, Summary CHAPTER 9 7. CONCLUSIONS AND FUTURE RESEARCH 7.1. Conclusions 7.1.1. Centrifuge modelling of MSW and geomembrane 7.1.2. Seismic behaviour of MSW landfills 7.1.3. Tension in geomemhrane on landflill slopes under static and earthquake foundation 7. 1.4. Integrity o flandfillsf ounded on liquefiable foundation 7.1.5. Cracking in clay 7.2. Future research 7.2.1. Seismic behaviour of MSW landfills on clay foundations 7.2.2. Limiting interface shear strength of geomembrane/clay interface in dynamic loading. 7.2.3. Crackingin compacted clay liners 7.2.4. Excess pore pressure generation in MSW APPENDIX 1 APPENDIX 2 APPENDIX 3 REFERENCES
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
General Books General Books Central Library, Sikkim University
General Book Section
551.22 THU/B (Browse shelf(Opens below)) Available P08408
Total holds: 0

CHAPTER I
I. INTRODUCTtON.
1.1. Typical landfill and configurations components
1.2. Regulatory framework controlling landfills
1.3. Relgulations on landfill siting, design and operations .
1.4. Failure of landfills
1.5. Objectives of the research
1.6. Layout of the thesis

CHAPTER 2
3. REVIEW OF LITERATURE.
3.1. Engineering properties of municipal solid waste
1.1.1. Unit weight
3.1.2. Compressibility
3.1.3. Shear strength characteristics
3.1.4. Moisture content
3.1.5. Porosity
3.1.6. Hydraulic conductivity
3.1.7. Dynamic prpperties
3.2. Liner systems of landfills
3.2.1. Compacted Clay liner (CCL)
3.2.3. Geomembranes (GM)
3.2.3. Geosynthetic clay liners (GCL)
3.2.4. Stability of liners
3.2.5. Previous work on clay liner deformation
3.3. Seismic analysis of landfills
3.3.1. Landfill response to seismic motion
3.3.2. Summary of numerical response analyses
3.3.3. Landfill stability and deformation
3.3.4. Earthquake-induced displacements and validity of decoupled approach
3.3.5. Comparion between one-and two-dimensional seismic analysis
3.4. Landfill performance during past earthquakes
3.4.1. Whittier narrows earthquake
3.4.2. Loma Prieta earthquake
3.4.3. Northridge earthquake
3.4.4. Summary

CHAPTERS 3
2. CENTRIFUGE MODELLING TECHNIQUE
2.1. Introduction
2.2. Scaling LAWS
2.3. Centrifuge and data acquisition
2.4. Centrifuge model container and instruments
2.4.1. Equivalent shear beam (ESB) box and laminar box
2.4.2. Accelerometers
2.4.3. Pore Pressure Transducers (PPTs)
2.4.4. Linearly varying differential transformers (LVDT) and Laser.
2.4.5. Pressure cells
2.4.6. Load cell
2.4.7. Viscometer
2.5. Centrifuge modelling of landfill components
2.5. Municipal Solid Waste (MSW)
2.5.2. Clay liner.
2.5.3. Geomembrane
2.6. Test programme
2.7. Model preparation techniques and centrifuge testing
2.7.1. Model preparation
2.7.2. Dynamic Testing
2.8. Preliminary centrifuge test
2.8. Shear wave velocity of model waste
2.8.2. Post-test observations
2.8.3. Particle Image Velocimetry (PtV) analysis
2.8.4. Model waste settlement
2.9. Summary
CHAPTER 4
4. SEISMIC BEHAVIOUR OFMUNICIPAL SOLID WASTE (MSW) LANDFILLS........
4.1. Introduction
4.2. Development of a model municipal solid waste for use in centrifuge testing
4.2J. Physical modelling of municipal solidwaste
4.2.2. Preparation of model waste
4.3. Physical properties of model waste mixtures
4.3.I. Unit weight
4.3.2. Compressibility
4.3.3. Shear strength
4.3.4. Particle size distribution
4.3.5. Choice of model waste.
4.4. Dynamic properties of model waste
4.4.1. Model preparation and testing
4.4.2. Shear wave velocity
4.4.3. Amplification of acceleration in model waste
4.4.4. Evaluation ofshear modulus and damping curves
4.4.5. Calculation of Shear modulus
4.4.6. Stress-strain loops and Shear modulus
4.4.7. Calculation of Equivalent Damping Ratio
4.4.8. Appropriate Data Filtering
4.4.9. Validity and limitations of the use of model waste
4.5. Seismic behaviour of " above and below ground fill" type landfills
4.5.1. Amplification of acceleration through the landfill
4.5.2. Deformations due to seismic loading
4.5.3. Post test observation of IT03
4.6. SEismic behaviour of " area fill" type landfill
4.6.1. Amplification of acceleration through the landfill
4 6.2 Deformations due to seismic loading
4 7. Frequency response of MSW landfills
4 8 Discussion: seismic analysis of MSW landfills
4.9. Summary

CHAPTER 5
5 TENSILE BEHAVIOUR OF GEOMEMBRANES ON LANDFILL SLOPES UNDER STATIC AND DYNAMIC LOADING
5.1. Introduction
5.2. Theory
5 3 Modelling geomembrane
5.3.1. Matching stress-strain characteristics of real geomembranes
5.3.2. Matching interface friction angle of a real geomembrane
5.4. Tension measuring setup
5 5 Centrifuge testing (IT04 and IT06)
5.4.1. Model preparation for tests IT04 & IT06
5.6. Testing procedure
5.7. Tension in geomembrane due to static loading
5.7.1. Results from test IT04 - a completed landfill
5.7.2. Results from test IT06 - a landfill cell
5.7.3. Discussion
5.8. Tension in geomembrane due to earthquake loading
5.8.1. Results from test IT04 - a completed landfill
5.8.2. Results from test IT06 - a landfill cell
5.8.3. Discussion
5.9. Post test observations
5.10. Normal stresses on the side slopes
5.11. Summary

CHAPTER 6
3. INTEGRITY OF LANDFILLS FOUNDED ON LIQUEFIABLE FOUNDATION UNDER EARTHQUAKE LOADING
3.1. Introduction
1.1. Definition of liquefaction
3.2. Centrifuge testing
3.2.1. Model preparation
3.2.2. Model earthquakes
3.3. Completed MSW landfill with geomembrane/clay liner (test IT05)
3.3.1. Acceleration
3.3.2. Excess pore pressure generation and dissipation
3.3.3. Surface soil and waste settlements during earthquake loading
3.3.4. Tension in the geomembrane
3.3.5. Observations during and after test IT05
3.4. Completed MSW landfill with single clay liner (test IT07)
3.4.1. Accelerations
3.4.2. Excess pore pressure generation and dissipation
3.4.3. Surface soil and clay liner movements
3.4.4. Observations during and after the test IT08
3.5. Active MSW landfill with single clay liner (test IT08)
3.5.1. Acceleration
3.5.2. Excess pore pressure generation and dissipation
3.5.3. Surface soil and clay liner movements
3.5.4. Observations during and after test IT08
3.6. Discussion
3.6.1. Acceleration
3.6.2. Excess pore pressure
3.6.3. Clay liner movements and damage
3.7. Summary

CHAPTER 7
6. CRACKING IN CLAY LINERS
6.1. Introduction
6.2. Experimental setup
6.2.1. Specimen preparation
6.2.2. Installation of PPTTs into the clay beams
6.3. Testing procedure
6.3.1. PIV analysis
6.4. Results
6.4.1. Longitudinal strain at mid-span of the beam
6.4.2. Other strain components
6.4.3. Position of neutral axis
6.4.4. Bending moment vs curvature
6.4.5. Pore pressure measurments
6.4.6. Stress distribution in the beam
6.4.7. Stress paths
6.4.8. Extreme fibre stress vs strain
6.5. Tensile strength of extreme fibre
6.6. Strain criteria for crack initiation
6.7. Discussion
6.8. Summary

CHAPTER 8
4. PRACTICAL IMPLICATIONS
4.1. Introduction
4.2. Amplification potential of MSW landfill
4.3. Acceleration transfer through clay/geomembrane interface
4.4, Tension in geomembrane on landfill side slopes
4.4.1. Static loading
4.4.2. Dynamic loading(earthquake loading)
4.5, Cracking in clay liners
4.6, Summary

CHAPTER 9
7. CONCLUSIONS AND FUTURE RESEARCH
7.1. Conclusions
7.1.1. Centrifuge modelling of MSW and geomembrane
7.1.2. Seismic behaviour of MSW landfills
7.1.3. Tension in geomemhrane on landflill slopes under static and earthquake foundation
7. 1.4. Integrity o flandfillsf ounded on liquefiable foundation
7.1.5. Cracking in clay
7.2. Future research
7.2.1. Seismic behaviour of MSW landfills on clay foundations
7.2.2. Limiting interface shear strength of geomembrane/clay interface in dynamic loading.
7.2.3. Crackingin compacted clay liners
7.2.4. Excess pore pressure generation in MSW
APPENDIX 1
APPENDIX 2
APPENDIX 3
REFERENCES

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha