TY - BOOK AU - Jin,Shuanggen TI - GNSS remote sensing : theory, methods and applications SN - 9789400774827 (ebook) U1 - 910.285 PY - 2014/// CY - New York PB - Speinger KW - Artificial satellites in navigation KW - Environmental monitoring KW - Geographic information systems KW - Global Positioning System N1 - Includes bibliographical references and index; Part I GNSS Theory and Delays 1 Introduction to GNSS 1.1 GNSS History 1.1.1 GPS 1.1.2 GLONASS 1.1.3 GALILEO. 1.1.4 Beidou/COMPASS 1.1.5 Other Regional Systems 1.2 GNSS Systems and Signals 1.2.1 GNSS Segments 1.2.2 GNSS Signals 1.3 GNSS Theory and Errors 1.3.1 GNSS Principle. 1.3.2 GNSS Error Sources. 1.4 GNSS Observations and Applications 1.4.1 GNSS Observation Network . 1.4.2 GNSS Applications References 2 GNSS Atmospheric and Multipath Delays 2.1 Atmospheric Refractivity 2.2 GNSS Atmospheric Delays 2.2.1 Neutral Atmospheric Delays. 2.2.2 Empirical Tropospheric Models 2.3 GNSS Ionospheric Delay 2.3.1 The Ionosphere 2.3.2 GNSS Ionospheric Delay 2.3.3 Empirical Ionospheric Models 2.4 GNSS Multipath Delay 2.4.1 Multipath Effects 2.4.2 Multipath Variations 2.4.3 Surface Reflection Characteristics Part II GNSS Atmospheric Sensing and Applications 3 Ground GNSS Atmospheric Sensing 3.1 Introduction 3.2 Theory and Methods 3.2.1 Estimates of GNSS ZTD 3.2.2 Mapping Functions 3.3 ZTD Estimate and Variations 3.3.1 ZTD Estimates from IGS Observations 3.3.2 Multi-Scale ZTD Variations 3.4 GNSS Precipitable Water Vapor 3.4.1 GNSS PWV Estimate 3.4.2 Comparison with Independent Observations 3.4.3 Mean PWV Characteristics 3.4.4 Seasonal PWV Variations 3.4.5 Diurnal PWV Variations . 3.5 3-D Water Vapor Topography 3.6 Summary References 4 Ground GNSS Ionosphere Sounding 4.1 History 4.2 GNSS Ionospheric Sounding 4.2.1 DCB Determination 4.2.2 TEC Estimate 4.3 2-D lonopspheric Mapping 4.3.1 Method of 2-D Ionospheric Mapping 4.3.2 Applications of 2-D GNSS TEC 4.4. 3-D GNSS Ionospheric Mapping. 4.4.1 3-D Ionospheric Topography 4.4.2 Validation of GNSS Ionospheric Tomography . 4.4.3 Assessment of IRI-2001 Using GNSS Tomography 4.4.4 Ionospheric Slab Thickness 4.4.5 3-D ionospheric Behaviours to Storms References 5 Theory of GNSS Radio Occultation 5.1 Introduction 5.1.1 Radio Occultation in Planetary Sciences 5.1.2 GNSS Radio Occultation in Earth Sciences 5.2 Principle of GNSS Radio Occultalion. 5.2.1 Atmospheric Refraction 5.2.2 Geometric Optics Approximation 5.2.3 Spherically Symmetric Atmosphere Assumption 5.2.4 Bending Angle and Refractive Index 5.3 GNSS Radio Occultation Processing 5.3.1 Calibrating and Extracting GNSS RO Observables 5.3.2 Bending Angle Retrieval 5.3.3 Ionosphere Retrieval 5.3.4 Neutral Atmosphere Retrieval Atmospheric Sensing Using GNSS RO 6.1 GNSS RO Atmospheric Sounding 6.1.1 Parameters Retrieval from GNSS RO 6.1.2 Dry Atmosphere Retrieval (Density, Pressure and Temperature) 6.1.3 Moist Atmosphere Retrieval 6.1.4 1D-Var (Variational Method). 6.2 Characteristics of GNSS RO Observations 6.2.1 Spatial Resolution (Vertical and Horizontal Resolution) 6.2.2 Accuracy and Precision Analysis 6.2.3 Measurement Errors 6.2.4 Calibration Errors 6.2.5 Retrieval Errors 6.2.6 Experimental Validation of RO Accuracy and Precision 6.3 Dynamic Processes Studies with GNSS RO 6.3.1 Tropopause and Stratospheric Waves 6.3.2 Tropical Tidal Waves 6.3.3 Weather Front 6.3.4 Tropical Cyclones (TC) 6.3.5 Atmospheric Boundary Layer (ABL) 6.4 Weather Prediction Applications 6.4.1 GNSS RO Data Assimilation 6.4.2 Operational Assimilation of GNSS RO in NWP Models 6.5 Climate Applications 6.6 Future Application of Radio Occultation 6.6.1 Future GNSS and GNSS RO Missions 6.6.2 Airborne and Mountain-Top GNSS RO 6.6.3 LEO-to-LEO Occultation Ionospheric Sounding Using GNSS-RO 7.1 Introduction. 7.2 Ionospheric Inversion 7.2.1 Ionosphere Inversion Based on Doppler 7.2.2 Ionosphere Inversion Based on TEC. 7.2.3 Recursive Inversion of TEC 7.2.4 Amplitude Inversion 7.3 Error Analysis 7.3.1 Measurement Errors 7.3.2 Data Processing Errors . 7.4 Ionospheric Products 7.5 GNSS-RO Ionospheric Applications 7.5.1 Establishing Ionospheric Mo 7.5.2 Ionospheric Tomography 7.5.3 Monitoring Ionospheric Anomalies. 7.5.4 Ionospheric Scintillation Reference? Part III GNSS Reflectometry and Remote Sensing 8 Theory of GNSS Reflectometry 8.1 Introduction. 8.2 Multi-static System: Geometry and Coverage 8.3 Specular and Diffuse Scattering 8.4 Delay and Doppler 8.5 Reflectivity Levels and Polarization Issues 8.6 Scattering Theories 8.6.1 Kirchhoff or Tangent Plane Approximation (KA) 8.6.2 Summary of Other Methods 8.6.3 Received GNSS Scattered Fields 8.6.4 The Bi-static Radar Equation for GNSS Modulated Signals. 8.7 Noise and Coherence Issues 8.8 Systematic Errors 8.9 PARIS Interferometric Technique (PIT) 8.10 Observables References Ocean Remote Sensing Using GNSS-R 9.1 Altimetry. 9.1.1 Group Delay Altimetry 9.1.2 Atmospheric Corrections. 9.1.3 GNSS-R Ocean Altimetric Performance 9.2 Ocean Surface Roughness 9.2.1 Surface Modelling 9.2.2 Retrieval Approaches References 10 Hydrology and Vegetation Remote Sensing. 10.1 Introduction 10.2 Hydrology GNSS-Reflectometry. 10.3 Hydrology Sensing from GNSS-R 10.3.1 Waveform Correlation 10.3.2 Interference Pattern Technique (IPX). 10.3.3 Hydrology Sensing from GNSS 10.3.4 GNSS-R Scattering Properties 10.3.5 GNSS-R Polarization 10.4 GNSS-R Forest Biomass Monitoring 10.5 Summary References 11 Cryospheric Sensing Using GNSS-R 11.1 Dry Snow Monitoring 11.1.1 Dry Snow Reflection Model: Multiple-Ray Single-Reflection 11.1.2 Dry Snow Observable: Lag-Hologram 11.2 Wet Snow Monitoring, 11.2.1 Observations from Space-Home GNSS-R . 11.2.2 Observations from Ground GNSS-R 11.3 Sounding the Sea Ice Conditions References 12 Summary and Future Chances 12.1 Status of GNSS Remote Sensing 12.1.1 Atmospheric Sensing 12.1.2 Ocean Sensing 12.1.3 Hydrology Sensing 12.1.4 Cryosphere Mapping 12.2 Future Developments and Chances 12.2.1 More GNSS Networks and Constellations 12.2.2 Advanced GNSS Receivers 12.2.3 New Missions and Systems 12.2.4 New and Emerging Applications ER -