Amazon cover image
Image from Amazon.com
Image from Coce

Finite-dimensional vector spaces/ Paul R. Halmos

By: Material type: TextSeries: (University series in undergraduate mathematics)Publication details: New York: Springer, 1993.Description: vii, 200 p. ; 24 cmISBN:
  • 9780387900933
Subject(s): DDC classification:
  • 512.52 HAL/F
Contents:
I. Spaces.- 1. Fields.- 2. Vector spaces.- 3. Examples.- 4. Comments.- 5. Linear dependence.- 6. Linear combinations.- 7. Bases.- 8. Dimension.- 9. Isomorphism.- 10. Subspaces.- 11. Calculus of subspaces.- 12. Dimension of a subspace.- 13. Dual spaces.- 14. Brackets.- 15. Dual bases.- 16. Reflexivity.- 17. Annihilators.- 18. Direct sums.- 19. Dimension of a direct sum.- 20. Dual of a direct sum.- 21. Quotient spaces.- 22. Dimension of a quotient space.- 23. Bilinear forms.- 24. Tensor products.- 25. Product bases.- 26. Permutations.- 27. Cycles.- 28. Parity.- 29. Multilinear forms.- 30. Alternating forms.- 31. Alternating forms of maximal degree.- II. Transformations.- 32. Linear transformations.- 33. Transformations as vectors.- 34. Products.- 35. Polynomials.- 36. Inverses.- 37. Matrices.- 38. Matrices of transformations.- 39. Invariance.- 40. Reducibility.- 41. Projections.- 42. Combinations of projections.- 43. Projections and invariance.- 44. Adjoints.- 45. Adjoints of projections.- 46. Change of basis.- 47. Similarity.- 48. Quotient transformations.- 49. Range and null-space.- 50. Rank and nullity.- 51. Transformations of rank one.- 52. Tensor products of transformations.- 53. Determinants.- 54. Proper values.- 55. Multiplicity.- 56. Triangular form.- 57. Nilpotence.- 58. Jordan form.- III. Orthogonality.- 59. Inner products.- 60. Complex inner products.- 61. Inner product spaces.- 62. Orthogonality.- 63. Completeness.- 64. Schwarz's inequality.- 65. Complete orthonormal sets.- 66. Projection theorem.- 67. Linear functionals.- 68. Parentheses versus brackets.- 69. Natural isomorphisms.- 70. Self-adjoint transformations.- 71. Polarization.- 72. Positive transformations.- 73. Isometries.- 74. Change of orthonormal basis.- 75. Perpendicular projections.- 76. Combinations of perpendicular projections.- 77. Complexification.- 78. Characterization of spectra.- 79. Spectral theorem.- 80. Normal transformations.- 81. Orthogonal transformations.- 82. Functions of transformations.- 83. Polar decomposition.- 84. Commutativity.- 85. Self-adjoint transformations of rank one.- IV. Analysis.- 86. Convergence of vectors.- 87. Norm.- 88. Expressions for the norm.- 89. Bounds of a self-adjoint transformation.- 90. Minimax principle.- 91. Convergence of linear transformations.- 92. Ergodic theorem.- 93. Power series.- Appendix. Hilbert Space.- Recommended Reading.- Index of Terms.- Index of Symbols
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
General Books Central Library, Sikkim University General Book Section 512.52 HAL/F (Browse shelf(Opens below)) Available P06404
Total holds: 0

I. Spaces.-
1. Fields.-
2. Vector spaces.-
3. Examples.-
4. Comments.-
5. Linear dependence.-
6. Linear combinations.-
7. Bases.-
8. Dimension.-
9. Isomorphism.-
10. Subspaces.-
11. Calculus of subspaces.-
12. Dimension of a subspace.-
13. Dual spaces.-
14. Brackets.-
15. Dual bases.-
16. Reflexivity.-
17. Annihilators.-
18. Direct sums.-
19. Dimension of a direct sum.-
20. Dual of a direct sum.-
21. Quotient spaces.-
22. Dimension of a quotient space.-
23. Bilinear forms.-
24. Tensor products.-
25. Product bases.-
26. Permutations.-
27. Cycles.-
28. Parity.-
29. Multilinear forms.-
30. Alternating forms.-
31. Alternating forms of maximal degree.-

II. Transformations.-
32. Linear transformations.-
33. Transformations as vectors.-
34. Products.-
35. Polynomials.-
36. Inverses.-
37. Matrices.-
38. Matrices of transformations.-
39. Invariance.-
40. Reducibility.-
41. Projections.-
42. Combinations of projections.-
43. Projections and invariance.-
44. Adjoints.-
45. Adjoints of projections.-
46. Change of basis.-
47. Similarity.-
48. Quotient transformations.-
49. Range and null-space.-
50. Rank and nullity.-
51. Transformations of rank one.-
52. Tensor products of transformations.-
53. Determinants.-
54. Proper values.-
55. Multiplicity.-
56. Triangular form.-
57. Nilpotence.-
58. Jordan form.-

III. Orthogonality.-
59. Inner products.-
60. Complex inner products.-
61. Inner product spaces.-
62. Orthogonality.-
63. Completeness.-
64. Schwarz's inequality.-
65. Complete orthonormal sets.-
66. Projection theorem.-
67. Linear functionals.-
68. Parentheses versus brackets.-
69. Natural isomorphisms.-
70. Self-adjoint transformations.-
71. Polarization.-
72. Positive transformations.-
73. Isometries.-
74. Change of orthonormal basis.-
75. Perpendicular projections.-
76. Combinations of perpendicular projections.-
77. Complexification.-
78. Characterization of spectra.-
79. Spectral theorem.-
80. Normal transformations.-
81. Orthogonal transformations.-
82. Functions of transformations.-
83. Polar decomposition.-
84. Commutativity.-
85. Self-adjoint transformations of rank one.-

IV. Analysis.-
86. Convergence of vectors.-
87. Norm.-
88. Expressions for the norm.-
89. Bounds of a self-adjoint transformation.-
90. Minimax principle.-
91. Convergence of linear transformations.-
92. Ergodic theorem.-
93. Power series.-
Appendix.
Hilbert Space.-
Recommended Reading.-
Index of Terms.-
Index of Symbols

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal