Artificial intelligence: A new synthesis (Record no. 4076)

MARC details
000 -LEADER
fixed length control field 09909nam a22001937a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781558604674
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3
Item number NIL/A
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name NIlsson, Nils J.
245 ## - TITLE STATEMENT
Title Artificial intelligence: A new synthesis
Statement of responsibility, etc. Nils J. Nilsson
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. Burlington, MA:
Name of publisher, distributor, etc. Morgan Kaufmann Publishers,
-- Elsevier,
Date of publication, distribution, etc. 1998.
300 ## - PHYSICAL DESCRIPTION
Extent xxi, 513 p.
Other physical details ill.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliography and index
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Introduction<br/>1.1 What Is AI?<br/>1.2 Approaches to Artificial lntelligence<br/>1.5 Brief History of AI<br/>1.4 Plan of the Book<br/>1.5 Additional Readings and Discussion<br/>I Reactive Machines<br/>Stimulus-Response Agents<br/>2.1 Perception and Action<br/>2.1.1 Perception<br/>2.1.2 Action<br/>2.1.3 Boolean Algebra<br/>2.1.4 Classes and Forms of Boolean Functions<br/>2.2 Representing and Implementing Action Functions 27<br/>2.2.1 Production Systems 27<br/>2.2.2 Networks 29<br/>2.2.5 The Subsumption Architecture 32<br/>2.5 Additional Readings and Discussion 33<br/>Neural Networks 57<br/>3.1 Introduction 37<br/>3.2 Training Single TLUs 38<br/>3.2.1 TLU Geometry 38<br/>3.2.2 Augmented Vectors 39<br/>3.2.3 Gradient Descent Methods 39<br/>3.2.4 The Widrow-Hoff Procedure 41<br/>3.2.5 The Generalized Delta Procedure 41<br/>3.2.6 The Error-Correction Procedure 43<br/>3.3 Neural Networks 44<br/>3.3.1 Motivation 44<br/>3.3.2 Notation 45<br/>3.3.3 The Backpropagation Method 46<br/>3.3.4 Computing Weight Changes in the Final Layer 48<br/>3.3.5 Computing Changes to the Weights in Intermediate Layers 3.4 Generalization, Accuracy, and Overfitting 51<br/>3.5 Additional Readings and Discussion 54<br/>Machine Evolution 59<br/>4.1 Evolutionary Computation 59<br/>4.2 Genetic Programming 60<br/>4.2.1 Program Representation in GP 60<br/>4.2.2 The GP Process<br/>4.2.3 Evolving a Wall-Following Robot 65<br/>4.5 Additional Readings and Discussion 69<br/>State Machines<br/>5.1 Representing the Environment by Feature Vectors 71<br/>5.2 Elman Networks<br/>5.5 Iconic Representations 74<br/>5.4 Blackboard Systems 77<br/>5.5 Additional Readings and Discussion<br/>6.1 Introduction<br/>6.2 Steering an Automobile<br/>6.5 Two Stages of Robot Vision<br/>6.4 Image Processing<br/>6.4.1 Averaging<br/>6.4.2 Edge Enhancement<br/>6.4.3 Combining Edge Enhancement with Averaging<br/>6.4.4 Region Finding<br/>6.4.5 Using Image Attributes Other Than Intensity 101<br/>6.5 Scene Analysis<br/>6.5.1 Interpreting Lines and Curves in the Image<br/>6.5.2 Model-Based Vision<br/>6.6 Stereo Vision and Depth Information 108<br/>6.7 Additional Readings and Discussion HO<br/>II Search in State Spaces 115<br/>7 Agents That Plan 117<br/>7.1 Memory Versus Computation 117<br/>1.1 State-Space Graphs 118<br/>7.3 Searching Explicit State Spaces 121<br/>7.4 Feature-Based State Spaces 122<br/>7.5 Graph Notation 124<br/>7.6 Additional Readings and Discussion 125<br/>8 Uninformed Search 129<br/>8.1 Formulating the State Space 129<br/>8.2 Components of Implicit State-Space Graphs 150<br/>8.3 Breadth-First Search 131<br/>8.4 Depth-First or Backtracking Search 133<br/>8.5 Iterative Deepening 135<br/>8.6 Additional Readings and Discussion 136<br/>9 Heuristic Search 139<br/>9.1 Using Evaluation Functions 139<br/>9.2 A General Graph-Searching Algorithm 141<br/>9.2.1 Algorithm A* 142<br/>9.2.2 Admissibility of A* 145<br/>9.2.3 The Consistency (or Monotone) Condition 150<br/>9.2.4 Iterative-Deepening A*<br/>9.2.5 Recursive Best-First Search 154<br/>9.3 Heuristic Functions and Search Efficiency 155<br/>9.4 Additional Readings and Discussion 160<br/>Planning, Acting, and Learning 165<br/>10.1 The Sense/Plan/Act Cycle 165<br/>10.2 Approximate Search 165<br/>10.2.1 Island-Driven Search 166<br/>10.2.2 Hierarchical Search 167<br/>10.2.3 Limited-Horizon Search 169<br/>10.2.4 Cycles <br/>10.2.5 Building Reactive Procedures 170<br/>10.3 Learning Heuristic Functions 172<br/>10.3.1 Explicit Graphs 172<br/>10.3.2 Implicit Graphs 175<br/>10.4 Rewards Instead of Goals 175<br/>10.5 Additional Readings and Discussion 177<br/>Alternative Search Formulations and<br/>Applications<br/>11.1 Assignment Problems 181<br/>11.2 Constructive Methods 185<br/>11.3 Heuristic Repair 187<br/>11.4 Function Optimization 189<br/>Adversarial Search 195<br/>12.1 Two-Agent Games 195<br/>12.2 The Minimax Procedure 197<br/>12.5 The Alpha-Beta Procedure 202<br/>12.4 The Search Efficiency of the Alpha-Beta Procedure 207<br/>12.5 Other Important Matters 208<br/>12.6 Games of Chance 208<br/>12.7 Learning Evaluation Functions 210<br/>12.8 Additional Readings and Discussion 212<br/>Ill Knowledge Representation and<br/>Reasoning 215<br/>The Propositional Calculus 217<br/>13.1 Using Constraints on Feature Values 217<br/>15.2 The Language 219<br/>15.5 Rules of Inference 220<br/>15.4 Definition of Proof 221<br/>15.5 Semantics 222<br/>15.5.1 Interpretations 222<br/>13.5.2 The Propositional Truth Table 225<br/>13.5.3 Satisfiability and Models 224<br/>13.5.4 Validity 224<br/>13.5.5 Equivalence 225<br/>13.5.6 Entailment 225<br/>15.6 Soundness and Completeness 226<br/>15.7 The PSAT Problem 227<br/>15.8 Other Important Topics 228<br/>13.8.1 Language Distinctions 228<br/>13.8.2 Metatheorems 22H<br/>13.8.3 Associative Laws 22*^<br/>13.8.4 Distributive Laws<br/>15.1 Motivation<br/>15.2 The Language and Its Syntax<br/>15.5 Semantics<br/>15.5.4 Knowledge<br/>15.4 Quantification<br/>15.5 Semantics of Quantifiers<br/>Resolution in the Propositional Calculus 231<br/>14.1 A New Rule of Inference: Resolution 231<br/>14.1.1 Clauses as wlfs<br/>14.1.2 Resolution on Clauses<br/>14.1.3 Soundness of Resolution<br/>14.2 Converting Arbitrary wffs to Conjunctions of Clauses<br/>14.5 Resolution Refutations<br/>14.4 Resolution Refutation Search Strategies<br/>14.4.1 Ordering Strategies<br/>14.4.2 Refinement Strategies<br/>14.5 Horn Clauses<br/>15.3 The Predicate Calculus 259<br/>15.3.1 Worlds<br/>15.3.2 Interpretations<br/>15.3.3 Models and Related Notions 243<br/>15.5.1 Universal Quantifiers 246<br/>15.5.2 Existential Quantifiers 247<br/>15.5.3 Useful Equivalences<br/>15.5.4 Rules of Inference<br/>15.6 Predicate Calculus as a Language for Representing<br/>Knowledge 248<br/>15.6.1 Conceptualizations<br/>15.6.2 Examples 248<br/>15.7 Additional Readings and Discussion 250<br/>Resolution in the Predicate Calculus 255<br/>16.1 Unification 255<br/>16.2 Predicate-Calculus Resolution 256<br/>16.5 Completeness and Soundness 257<br/>16.4 Converting Arbitrary wffs to Clause Form 257<br/>16.5 Using Resolution to Prove Theorems 260<br/>16.6 Answer Extraction 261<br/>16.7 The Equality Predicate 262<br/>16.8 Additional Readings and Discussion 265<br/>Knowledge-Based Systems 269<br/>Confronting the Real World 269<br/>Reasoning Using Horn Clauses 270<br/>Maintenance in Dynamic Knowledge Bases 275<br/>17.4 Rule-Based Expert Systems 280<br/>17.5 Rule Learning 286<br/>17.5.1 Learning Prepositional Calculus Rules 286<br/>17.5.2 Learning First-Order Logic Rules 291<br/>17.5.3 Explanation-Based Generalization 295<br/>17.6 Additional Readings and Discussion 297<br/>Representing Commonsense Knowledge <br/>18.1 The Commonsense World<br/>18.1.1 What Is Commonsense Knowledge?<br/>18.1.2 Difficulties in Representing Commonsense Knowledge<br/>18.1.3 The Importance of Commonsense Knowledge<br/>18.1.4 Research Areas<br/>18.2 Time<br/>18.3 Knowledge Representation by Networks<br/>18.5.1 Taxonomic Knowledge<br/>18.3.2 Semantic Networks<br/>18.3.3 Nonmonotonic Reasoning in Semantic Networks 309<br/>18.3.4 Frames<br/>18.4 Additional Readings and Discussion<br/>Reasoning with Uncertain Information 517<br/>19.1 Review of Probability Theory<br/>19.1.1 Fundamental Ideas<br/>19.1.2 Conditional Probabilities<br/>19.2 Probabilistic Inference<br/>19.2.1 A General Method<br/>19.2.2 Conditional Independence<br/>19.5 Bayes Networks<br/>19.4 Patterns of Inference in Bayes Networks<br/>19.5 Uncertain Evidence<br/>19.6 D-Separation<br/>19.7 Probabilistic Inference in Polytrees 532<br/>19.7.1 Evidence Above<br/>19.7.2 Evidence Below<br/>19.7.3 Evidence Above and Below 336<br/>19.7.4 A Numerical Example 336<br/>19.8 Additional Readings and Discussion 358<br/>Learning and Acting with Bayes Nets 345<br/>20.1 Learning Bayes Nets 343<br/>20.1.1 Known Network Structure 343<br/>20.1.2 Learning Network Structure 346<br/>20.2 Probabilistic Inference and Action 351<br/>20.2.1 The General Setting 351<br/>20.2.2 An Extended Example 552<br/>20.2.5 Generalizing the Example 556<br/>20.5 Additional Readings and Discussion 358<br/>IV Planning Methods Based on<br/>Logic 361<br/>The Situation Calculus 363<br/>21.1 Reasoning about States and Actions 563<br/>21.2 Some Difficulties 367<br/>21.2.1 Frame Axioms 367<br/>21.2.2 Qualifications 369<br/>21.2.3 Ramifications 369<br/>21.3 Generating Plans 369<br/>21.4 Additional Readings and Discussion 570<br/>Planning 575<br/>22.1 STRIPS Planning Systems 373<br/>22.1.1 Describing States and Goals 373<br/>22.1.2 Forward Search Methods 374<br/>22.1.3 Recursive STRIPS 376<br/>22.1.4 Plans with Run-Time Conditionals 379<br/>22.1.5 The Sussman Anomaly 380<br/>22.1.6 Backward Search Methods 381<br/>22.2 Plan Spaces and Partial-Order Planning 385<br/>22.3 Hierarchical Planning 393<br/>22.3.1 ABSTRIPS 393<br/>22.3.2 Combining Hierarchical and Partial-Order Planning 395<br/>22.4 Learning Plans 396<br/>22.5 Additional Readings and Discussion 398<br/>V Communication and Integration 405<br/>Multiple Agents 407<br/>25.1 Interacting Agents 407<br/>25.2 Models of Other Agents 408<br/>23.2.1 Varieties of Models 408<br/>23.2.2 Simulation Strategies 410<br/>23.2.3 Simulated Databases 410<br/>23.2.4 The Intentional Stance 411<br/>25.5 A Modal Logic of Knowledge 412<br/>23.3.1 Modal Operators 412<br/>23.3.2 Knowledge Axioms 413<br/>25.5.3 Reasoning about Other Agents'Knowledge 415<br/>25.5.4 Predicting Actions of Other Agents 417<br/>23.4 Additional Readings and Discussion 417<br/>Communication among Agents 421<br/>24.1 Speech Acts 421<br/>24.1.1 Planning Speech Acts 425<br/>24.1.2 Implementing Speech Acts 425<br/>24.2 Understanding Language Strings 425<br/>24.2.1 Phrase-Structure Grammars 425<br/>24.2.2 Semantic Analysis 428<br/>24.2.5 Expanding the Grammar 452<br/>24.3 Efficient Communication 435<br/>24.5.1 Use of Context 455<br/>24.5.2 Use of Knowledge to Resolve Ambiguities 456<br/>24.4 Natural Language Processing 437<br/>24.5 Additional Readings and Discussion 440<br/>Agent Architectures 443<br/>25.1 Three-Level Architectures 444<br/>25.2 Goal Arbitration 446<br/>25.3 The Triple-Tower Architecture 448<br/>25.4 Bootstrapping 449<br/>25.5 Additional Readings and Discussion 450<br/>
650 ## - SUBJECT
Keyword Artificial intelligence
650 ## - SUBJECT
Keyword Knowledge representation and reasoning
650 ## - SUBJECT
Keyword Neural networks
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type GN Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Koha item type
        Central Library, Sikkim University Central Library, Sikkim University General Book Section 03/07/2016 006.3 NIL/A P21209 03/07/2016 General Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha