Pattern recognition and machine learning / (Record no. 4064)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 10378cam a22002297a 4500 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 0387310738 (hd.bd.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9780387310732 |
040 ## - CATALOGING SOURCE | |
Transcribing agency | CUS |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 006.4 |
Item number | BIS/P |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Bishop, Christopher M. |
245 10 - TITLE STATEMENT | |
Title | Pattern recognition and machine learning / |
Statement of responsibility, etc. | Christopher M. Bishop. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc. | New York : |
Name of publisher, distributor, etc. | Springer, |
Date of publication, distribution, etc. | 2006. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xx, 738 p. : |
Other physical details | ill. (some col.) ; |
Dimensions | 25 cm. |
440 #0 - SERIES | |
Title | Information science and statistics |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc | Includes bibliographical references and index. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | Introduction ^<br/>1.1 Example: Polynomial Curve Fitting 4<br/>1.2 Probability Theory 12<br/>1.2.1 Probability densities 17<br/>1.2.2 Expectations and covariances 19<br/>1.2.3 Bayesian probabilities 21<br/>1.2.4 The Gaussian distribution 24<br/>1.2.5 Curve fitting re-visited 28<br/>1.2.6 Bayesian curve fitting 30<br/>1.3 Model Selection 32<br/>1.4 The Curse of Dimensionality 33<br/>1.5 Decision Theory 38<br/>1.5.1 Minimizing the misclassification rate 39<br/>1.5.2 Minimizing the expected loss 41<br/>1.5.3 The reject option 42<br/>1.5.4 Inference and decision 42<br/>1.5.5 Loss functions for regression 46<br/>1.6 Information Theory 48<br/>1.6.1 Relative entropy and mutualinformation<br/>Exercises<br/>* ' 58<br/>2 Probability Distributions 67<br/>2.1 Binary Variables 68<br/>2.1.) The beta distribution 71<br/>2.2 Multinomial Variables 74<br/>2.2.1 The Dirichlet distribution 76<br/>2.3 The Gaussian Distribution 78<br/>2.3.1 Conditional Gaussian distributions 85<br/>2.3.2 Marginal Gaussian distributions 88<br/>2.3.3 Bayes' theorem for Gaussian variables 90<br/>2.3.4 Maximum likelihood for the Gaussian 93<br/>2.3.5 Sequential e.stimation 94<br/>2.3.6 Bayesian inference for the Gaus.sian 97<br/>2.3.7 Student's t-distribution 102<br/>2.3.8 Periodic variables 105<br/>2.3.9 Mixtures of Gaussians 110<br/>2.4 The Exponential Family 11^<br/>2.4.1 Maximum likelihood and sufficient statistics 116<br/>2.4.2 Conjugate priors 117<br/>2.4.3 Noninformative priors 117<br/>2.5 Nonparametric Methods 120<br/>2.5.1 Kernel density estimators 122<br/>2.5.2 Nearest-neighbour methods . 124<br/>Exercises 127<br/>3 Linear Models for Regression 137<br/>3.1 Linear Basis Function Models 138<br/>3.1.1 Maximum likelihood and least squares 140<br/>3.1.2 Geometry of least squares 143<br/>3.1.3 Sequential learning ^43<br/>3.1.4 Regularized least squares 144<br/>3.1.5 Multiple outputs 146<br/>3.2 The Bias-Variance Decomposition 147<br/>3.3 Bayesian Linear Regression 152<br/>3.3.1 Parameter distribution 152<br/>3.3.2 Predictive distribution 156<br/>3.3.3 Equivalent kernel 159<br/>3.4 Bayesian Model Comparison 161<br/>3.5 The Evidence Approximation 165<br/>3.5.1 Evaluation of the evidence function 166<br/>3.5.2 Maximizing the evidence function 168<br/>3.5.3 Effective number of parameters 170<br/>3.6 Limitations of Fixed Basis Functions 172<br/>Exercises<br/>4 Linear Models for Classification 179<br/>4.1 Discriminant Functions 181<br/>4.1.1 Two classes 181<br/>4.1.2 Multiple classes 182<br/>4.1.3 Least squares for classification 184<br/>4.1.4 Fisher's linear discriminant 186<br/>4.1.5 Relation to least squares 189<br/>4.1.6 Fisher's discriminant for multiple classes 191<br/>4.1.7 The perceptron algorithm 192<br/>4.2 Probabilistic Generative Models 196<br/>4.2.1 Continuous inputs 198<br/>4.2.2 Maximum likelihood solution 200<br/>4.2.3 Discrete features 202<br/>4.2.4 Exponential family 202<br/>4.3 Probabilistic Discriminative Models 203<br/>4.3.1 Fixed basis functions 204<br/>4.3.2 Logistic regression 205<br/>4.3.3 Iterative reweighted least squares 207<br/>4.3.4 Multiclass logistic regression 209<br/>4.3.5 Probit regression 210<br/>4.3.6 Canonical link functions 212<br/>4.4 The Laplace Approximation 213<br/>4.4.1 Model comparison and BIG 216<br/>4.5 Bayesian Logistic Regression 217<br/>4.5.1 Laplace approximation 217<br/>4 5.2 Predictive distribution 218<br/>Exercises<br/>5 Neural Networks<br/>5.1 Feed-forward Network Functions<br/>5.1.1 Weight-space symmetries<br/>5.2 Network Training<br/>5.2.1 Parameter optimization<br/>5.2.2 Local quadratic approximation<br/>5.2.3 Use of gradient information<br/>5.2.4 Gradient descent optimization ^41<br/>5.3 Error Backpropagation ; • ' 242<br/>5.3.1 Evaluation of error-function derivatives ^45<br/>5.3.2 A simple example ■ ■ • . . . . 246<br/>5.3.3 Efficiency of backpropagation ■ ■ ■<br/>5.3.4 The Jacobian matrix * * 249<br/>5.4 The Hessian Matrix ■ ' ' ^ 250<br/>5.4.1 Diagonal approximation • • 251<br/>5.4.2 Outer product approximation ' 252<br/>5.4.3 Inverse Hessian . . ■<br/>220<br/>5.4.4 Finite differences 252<br/>5.4.5 Exact evaluation of the Hessian 253<br/>5.4.6 Fast multiplication by the Hessian 254<br/>5.5 Regularization in Neural Networks 256<br/>5.5.1 Consistent Gaussian priors 257<br/>5.5.2 Early stopping 259<br/>5.5.3 Invariances 261<br/>5.5.4 Tangent propagation 263<br/>5.5.5 Training with transformed data 265<br/>5.5.6 Convolutional networks 267<br/>5.5.7 Soft weight sharing 269<br/>5.6 Mixture Density Networks 272<br/>5.7 Bayesian Neural Networks 277<br/>5.7.1 Posterior parameter distribution 278<br/>5.7.2 Hyperparameter optimization 280<br/>5.7.3 Bayesian neural networks for classification 281<br/>Exercises 284<br/>Kernel Methods 291<br/>6.1 Dual Representations 293<br/>6.2 Constructing Kernels 294<br/>6.3 Radial Basis Function Networks 299<br/>6.3.1 Nadaraya-Watson model 301<br/>6.4 Gaussian Processes 303<br/>6.4.1 Linear regression revisited 304<br/>6.4.2 Gaussian processes for regression 306<br/>6.4.3 Learning the hyperparameters 311<br/>6.4.4 Automatic relevance determination 312<br/>6.4.5 Gaussian processes for classification 313<br/>6.4.6 Laplace approximation 315<br/>6.4.7 Connection to neural networks 319<br/>Exercises 320<br/>Sparse Kernel Machines 325<br/>7.1 Maximum Margin Classifiers 326<br/>7.1.1 Overlapping class distributions 331<br/>7.1.2 Relation to logistic regression 336<br/>7.1.3 Multiclass SVMs 333<br/>7.1.4 SVMs for regression 339<br/>7.1.5 Computational learning theory 344<br/>7.2 Relevance Vector Machines • • • • •<br/>7.2.1 RVM for regression 345<br/>7.2.2 Analysis of sparsity 349<br/>7.2.3 RVM for classification 353<br/>Exercises . . 357<br/>8 Graphical Models 359<br/>8.1 Bayesian Networks 360<br/>8.1.1 Example: Polynomial regression 362<br/>8.1.2 Generative models 365<br/>8.1.3 Di.screte variables 366<br/>8.1.4 Linear-Gaussian models 370<br/>8.2 Conditional Independence 372<br/>8.2.1 Three example graphs 373<br/>8.2.2 D-separation 378<br/>8.3 Markov Random Fields 383<br/>8.3.1 Conditional independence properties 383<br/>8.3.2 Factorization properties 384<br/>8.3.3 Illustration: Image de-noising 387<br/>8.3.4 Relation to directed graphs 390<br/>8.4 Inference in Graphical Models 393<br/>8.4.1 Inference on a chain 394<br/>8.4.2 Trees 398<br/>8.4.3 Factor graphs 399<br/>8.4.4 The sum-product algorithm 402<br/>8.4.5 The max-sum algorithm 411<br/>8.4.6 Exact inference in general graphs 416<br/>8.4.7 Loopy belief propagation 417<br/>8.4.8 Learning the graph structure 418<br/>Exercises 418<br/>9 Mixture Models and EM 423<br/>9.1 /^-means Clustering 424<br/>9.1.1 Image segmentation and compression 428<br/>9.2 Mixtures of Gaussians 430<br/>9.2.1 Maximum likelihood 432<br/>9.2.2 EM for Gaussian mixtures 435<br/>9.3 An Alternative View of EM 439<br/>9.3.1 Gaussian mixtures revisited 441<br/>9.3.2 Relation to A'-means 443<br/>9.3.3 Mixtures of Bernoulli distributions 444<br/>9.3.4 EM for Bayesian linear regression 448<br/>9.4 The EM Algorithm in General 450<br/>Exercises 455<br/>10 Approximate Inference 461<br/>10.1 Variational Inference 462<br/>10.1.1 Factorized distributions 464<br/>10.1.2 Properties of factorized approximations 466<br/>10.1.3 Example: The univariate Gaussian 470<br/>10.1.4 Model compari.son 473<br/>10.2 Illustration: Variational Mixture of Gaussians 474<br/>10.2.1 Variational distribution 475<br/>10.2.2 Variational lower bound 481<br/>10.2.3 Predictive density 482<br/>10.2.4 Determining the number of components 483<br/>10.2.5 Induced factorizations 485<br/>10.3 Variational Linear Regression 486<br/>10.3.1 Variational distribution 486<br/>10.3.2 Predictive distribution 488<br/>10.3.3 Lower bound 489<br/>10.4 Exponential Family Distributions 490<br/>10.4.1 Variational message passing 491<br/>10.5 Local Variational Methods 493<br/>10.6 Variational Logistic Regression 498<br/>10.6.1 Variational posterior distribution 498<br/>10.6.2 Optimizing the variational parameters 500<br/>10.6.3 Inference of hyperparameters 502<br/>10.7 Expectation Propagation 505<br/>10.7.1 Example; The clutter problem 511<br/>10.7.2 Expectation propagation on graphs 513<br/>Exerci.ses<br/>11 Sampling Methods<br/>11.1 Basic Sampling Algorithms<br/>11.1.1 Standard distributions 526<br/>11.1.2 Rejection sampling 528<br/>11.1.3 Adaptive rejection sampling 530<br/>11.1.4 Importance sampling 532<br/>11.1.5 Sampling-importance-resampling 534<br/>11.1.6 Sampling and the EM algorithm 536<br/>11.2 Markov Chain Monte Carlo 537<br/>11.2.1 Markov chains 539<br/>11.2.2 The Metropolis-Hastings algorithm 541<br/>11.3 Gibbs Sampling 542<br/>11.4 Slice Sampling 546<br/>11.5 The Hybrid Monte Carlo Algorithm 548<br/>11.5.1 Dynamical systems 548<br/>11.5.2 Hybrid Monte Carlo 552<br/>11.6 Estimating the Partition Function 554<br/>Exercises 555<br/>12 Continuous Latent Variables 559<br/>12.1 Principal Component Analysis 561<br/>12.1.1 Maximum variance formulation 561<br/>12.1.2 Minimum-error formulation 563<br/>12.1.3 Applications of PCA 565<br/>12.1.4 PCA for high-dimensional data 569<br/>12.2 Probabilistic PCA 57O<br/>12.2.1 Maximum likelihood PCA 574<br/>12 2.2 EM algorithm for PCA 577<br/>12.2.3 Bayesian PCA 58O<br/>12.2.4 Factor analysis 533<br/>12.3 Kernel PCA 586<br/>12.4 Nonlinear Latent Variable Models 591<br/>12.4.1 Independent component analysis 591<br/>12.4.2 Autoassociative neural networks 592<br/>12.4.3 Modelling nonlinear manifolds 595<br/>Exercises 599<br/>13 Sequential Data 605<br/>13.1 Markov Models 607<br/>13.2 Hidden Markov Models 610<br/>13.2.1 Maximum likelihood for the HMM 615<br/>13.2.2 The forward-backward algorithm 618<br/>13.2.3 The sum-product algorithm for the HMM 625<br/>13.2.4 Scaling factors 627<br/>13.2.5 The Viterbi algorithm 629<br/>13.2.6 Extensions of the hidden Markov model 631<br/>13.3 Linear Dynamical Systems 635<br/>13.3.1 Inference in LDS 638<br/>13.3.2 Learning in LDS 642<br/>13.3.3 Extensions of LDS 644<br/>13.3.4 Particle fillers 645<br/>Exercises 646<br/>14 Combining Models 653<br/>14.1 Bayesian Mode! Averaging 654<br/>14.2 Committees 655<br/>14.3 Boosting 657<br/>14.3.1 Minimizing exponential error 659<br/>14.3.2 Error functions for boosting 661<br/>14.4 Tree-based Models 663<br/>14.5 Conditional Mixture Models 666<br/>14.5.1 Mixtures of linear regression models 667<br/>14.5.2 Mixtures of logistic models 670<br/>14.5.3 Mixtures of experts 672<br/>Exercises 674 |
650 #0 - SUBJECT | |
Keyword | Pattern perception. |
650 #0 - SUBJECT | |
Keyword | Machine learning. |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | GN Books |
Withdrawn status | Lost status | Damaged status | Not for loan | Home library | Current library | Shelving location | Date acquired | Full call number | Accession number | Date last seen | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|
Central Library, Sikkim University | Central Library, Sikkim University | General Book Section | 30/06/2016 | 006.4 BIS/P | P35914 | 30/06/2016 | General Books |