Handbook of advanced plasma processing techniques / (Record no. 194658)

MARC details
000 -LEADER
fixed length control field 01139cam a22003014a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783540667728
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.044
Item number SHU/H
245 00 - TITLE STATEMENT
Title Handbook of advanced plasma processing techniques /
Statement of responsibility, etc. R.J. Shul, S.J. Pearton (eds.).
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. Berlin ;
-- New York :
Name of publisher, distributor, etc. Springer,
Date of publication, distribution, etc. c2000.
300 ## - PHYSICAL DESCRIPTION
Extent xvi, 653 p. :
Other physical details ill. ;
Dimensions 24 cm.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1 Some Fundamental Aspects of Plasma-Assisted Etching.- 1.1 Introduction.- 1.2 The Evolution of Plasma Etching Equipment.- 1.2.1 The "Barrel" Systems.- 1.2.2 Planar and Cylindrical Diode Systems.- 1.2.3 Planar Triode Systems.- 1.2.4 Dual Frequency Planar Triode Systems.- 1.2.5 Inductively Coupled Plasmas, Wave Generated Plasmas, etc.- 1.3 The Role of Ions in Reactive Ion Etching.- 1.3.1 Ion-Assisted Gas-Surface Chemistry and the Resulting Etching Anisotropy.- 1.3.2 Mechanistic Aspects of Ion-Assisted Gas-Surface Chemistry.- 1.3.3 Other Factors That Influence Etching Anisotropy.- 1.4 The Influence of the Reactor Walls and Other Surfaces.- 1.4.1 The Etching Process.- 1.4.2 Polymer Deposition.- 1.4.3 Surface-Catalyzed Atom-Atom Recombination.- 1.5 Ion Beam-Based Methods.- 1.6 Summary.- References.- 2 Plasma Fundamentals for Materials Processing.- 2.1 Introduction.- 2.2 Single Particle Motion.- 2.3 Collision Processes.- 2.4 Velocity Distributions.- 2.5 Sheaths.- 2.6 Plasma Transport.- 2.7 Dielectric Properties.- 2.8 Plasma Sources for Thin Films Processing.- 2.8.1 Capacitive Sources.- 2.8.2 High Density Sources.- 2.8.3 Inductive Sources.- 2.8.4 ECR Sources.- 2.8.5 Helicon Sources.- 2.8.6 Wave Sources.- 2.8.7 Downstream Sources.- References.- 3 Plasma Modeling.- 3.1 Introduction.- 3.2 Historical Perspective.- 3.3 Plasma Modeling Issues.- 3.3.1 Well Mixed Reactor Models and Applications (0-D).- 3.3.2 One-Dimensional Models and Applications.- 3.3.3 Two-Dimensional Models and Applications.- 3.3.4 Three-Dimensional Models and Applications.- 3.3.5 2-D and 3-D Profile Evolution Models and Applications.- 3.4 Chemical Reaction Mechanisms.- 3.4.1 Gas-Phase Kinetic and Transport Processes.- 3.4.2 Surface Chemistry.- 3.4.3 Reaction Mechanism Validation, Tuning, and Reduction.- 3.4.4 Sample Reaction Mechanism.- 3.5 Examples of Application of Plasma Modeling to Design or Optimization.- 3.5.1 Optimization of Plasma Cleaning Process to Reduce Reactor Emissions.- 3.5.2 Optimization of Chemical Downstream Etch Process Conditions.- 3.5.3 Reactor Design: Scaling-Up from 200 to 300 mm Wafers.- 3.5.4 Mapping Pressure Gradients in Reactor Pump Port and Inlet Regions.- 3.6 Future Directions of Plasma Modeling.- References.- 4 Plasma Reactor Modeling.- 4.1 Introduction.- 4.2 Reactor Scale Model.- 4.2.1 A Review of Various Approaches.- 4.2.2 Global Model.- 4.2.3 Continuum Reactor Model.- 4.2.4 Hybrid Model.- 4.3 Feature Level Modeling.- 4.4 Database Needs.- 4.5 Concluding Remarks.- References.- 5 Overview of Plasma Diagnostic Techniques.- 5.1 Introduction.- 5.2 Plasma Electrical Characterization.- 5.2.1 Electrical Diagnostics.- 5.2.2 Microwave Diagnostic Techniques.- 5.2.3 Ion-Energy Analyzers.- 5.3 Optical Diagnostic Techniques.- 5.3.1 Optical Emission.- 5.3.2 Optical Absorption Techniques.- 5.3.3 Laser-Induced Fluorescence.- 5.3.4 Negative Ion Photodetachment.- 5.3.5 Optogalvanic Spectroscopy.- 5.3.6 Thomson Scattering.- References.- 6 Mass Spectrometric Characterization of Plasma Etching Processes.- 6.1 Introduction.- 6.2 Application to Fundamental Studies.- 6.2.1 Silicon/Fluorine.- 6.2.2 Silicon/Chlorine.- 6.2.3 Gallium Arsenide/Chlorine.- 6.3 Application in Etch Processing Reactors.- 6.3.1 General Description of Experiments.- 6.3.2 IV-IV Semiconductors.- 6.3.3 III-V Semiconductors.- 6.3.4 II-VI Semiconductors.- 6.3.5 Metals and Perovskites.- 6.3.6 Issues in Application and Interpretation.- 6.4 Summary and Future Directions.- References.- 7 Fundamentals of Plasma Process-Induced Charging and Damage.- 7.1 Introduction.- 7.2 The Origin of Pattern-Dependent Charging.- 7.2.1 Differences in Ion and Electron Angular Distributions.- 7.2.2 Charging as a Result of Current Imbalance.- 7.2.3 Electron Shading Effects.- 7.3 The Notching Effect.- 7.3.1 Observations and Mechanisms.- 7.3.2 Phenomena that Influence Notching.- 7.3.3 Results from Self-Consistent Charging Simulations.- 7.3.4 Validation.- 7.4 Other Profile Effects Influenced by Charging.- 7.4.1 Reactive Ion Etching Lag.- 7.4.2 Microtrenching.- 7.5 Gate Oxide Degradation.- 7.5.1 The Driving Force for Current Injection.- 7.5.2 Tunneling Current Transients.- 7.5.3 The Influence of Electron and Ion Temperature.- 7.6 Charging Reduction Methodology.- 7.7 Concluding Remarks.- 7.7.1 Historical Perspective.- 7.7.2 Will Charging Problems Persist?.- References.- 8 Surface Damage Induced by Dry Etching.- 8.1 Introduction.- 8.2 Surface Damage in Si.- 8.2.1 Changes in Electrical Characteristics due to Dry Etching.- 8.2.2 Defects Evaluated by Surface Analysis.- 8.2.3 Modeling of Etch-Induced Damage.- 8.3 Surface Damage in III-V Semiconductors.- 8.3.1 Damage Dependence on Etch Conditions.- 8.3.2 Effects of Etch Time and Materials on Defect Generation.- 8.3.3 Changes in Electrical and Optical Characteristics.- 8.4 Damage Removal.- 8.4.1 Wet Etching, Dry Etching, Thermal Annealing, and Two-Step Etching.- 8.4.2 Passivation by Low-Energy Reactive Species.- 8.5 Summary.- References.- 9 Photomask Etching.- 9.1 Introduction.- 9.2 Optical Lithography.- 9.2.1 Photomask Basics.- 9.2.2 Chrome Photomasks.- 9.2.3 MoSi Photomasks.- 9.2.4 Phase Shift Mask Technology.- 9.3 X-Ray Lithography.- 9.3.1 X-Ray Lithography Basics.- 9.3.2 Gold Absorber-Based Masks.- 9.3.3 Refractory Masks.- 9.3.4 Amorphous Refractory-Based Masks.- 9.3.5 Thermal Characteristics of a Mask Etch Process.- 9.3.6 Hard Mask Materials.- 9.4 SCALPEL.- 9.4.1 SCALPEL Basics.- 9.4.2 SCALPEL Mask Blank Processing.- 9.4.3 SCALPEL Mask Pattern Transfer.- 9.5 EUVL.- 9.5.1 EUVL Basics.- 9.5.2 EUVL Masks.- 9.5.3 EUV Mask Pattern Transfer.- 9.6 Ion Projection Lithography.- 9.6.1 Ion Projection Lithography Basics.- 9.6.2 IPL Masks.- 9.6.3 IPL Mask Pattern Transfer.- 9.7 IPL Mask Distortion Issues.- 9.8 Conclusion.- References.- 10 Bulk Si Micromachining for Integrated Microsystems and MEMS Processing.- 10.1 Introduction.- 10.2 Etch Technologies.- 10.2.1 Wet Chemical Etching.- 10.2.2 Plasma Etching.- 10.2.3 Reactive Ion Etching.- 10.2.4 High-Density Plasma Etching.- 10.2.5 Deep Reactive Ion Etching.- 10.3 ECR Results.- 10.3.1 ECR Experimental.- 10.3.2 ECR Process Parameters.- 10.3.3 ECR Process Applications.- 10.4 DRIE Results.- 10.4.1 DRIE versus ICP Etch Comparison.- 10.4.2 Etch Rates and Selectivity to Masking Materials.- 10.4.3 Aspect Ratio Dependent Etching (ARDE) in DRIE.- 10.4.4 Etch Selectivities.- 10.5 DRIE Applications.- 10.5.1 Chemical Sensing Devices.- 10.5.2 Advanced Packaging.- 10.5.3 SOI DRIE Etching.- 10.6 Conclusions.- References.- 11 Plasma Processing of III-V Materials.- 11.1 Introduction.- 11.2 Dry Etching Techniques.- 11.2.1 Ion Beam Etching.- 11.2.2 Reactive Ion Etching.- 11.2.3 High-Density Plasma Reactive Ion Etching.- 11.3 Masking Materials and Methods.- 11.4 Dry Etching Chemistries.- 11.5 Dry Etching of GaAs and Related Materials.- 11.6 Dry Etching of InP and Related Materials.- 11.7 Dry Etching of GaN and Related Materials.- 11.8 Selective Dry Etching of III-V Materials.- 11.8.1 GaAs on AlGaAs.- 11.8.2 InGaAs on InAlAs.- 11.8.3 GaN on AlGaN.- 11.9 Conclusion.- References.- 12 Ion Beam Etching of Compound Semiconductors.- 12.1 Introduction.- 12.2 Definitions.- 12.2.1 Ion Beam Etching.- 12.2.2 Reactive Ion Beam Etching.- 12.2.3 Chemically Assisted Ion Beam Etching.- 12.2.4 Sputter Yield.- 12.3 Ion Sources.- 12.4 Historic Development.- 12.5 Grid Design, Beam Uniformity, and Divergence.- 12.6 Brief Overview of Etching Kinetics and Chemistry.- 12.7 Surface Quality and Etch Masking.- 12.8 RIBE Etch Technology.- 12.8.1 RIBE of GaAs and AlGaAs.- 12.8.2 RIBE of InP.- 12.8.3 RIBE of InGaAsP and InP.- 12.8.4 RIBE of AlGaInP, GaInP and AlGaInAs.- 12.8.5 RIBE of (Al,Ga)Sb, (In,Ga)Sb and InAsSb.- 12.8.6 RIBE of GaP and GaN.- 12.8.7 RIBE of ZnSe and ZnS.- 12.9 CAIBE Etch Technology.- 12.9.1 CAIBE of GaAs.- 12.9.2 CAIBE of AlGaAs.- 12.9.3 CAIBE of InP and InGaAsP.- 12.9.4 CAIBE of AlGaInP and AlGaInAs.- 12.9.5 CAIBE of (Al,Ga)Sb and InSb.- 12.9.6 CAIBE of (Al,Ga)N.- 12.10 Endpoint Detection.- 12.11 Damage.- References.- 13 Dry Etching of InP Vias.- 13.1 Introduction.- 13.2 Past Difficulties in Obtaining High Rate Etching for InP.- 13.2.1 High Bias CH4-based Etching of InP.- 13.2.2 Elevated Temperature Cl-based Etching of InP.- 13.3 High Density Plasma Sources for High InP Etch Rate.- 13.3.1 Reduced Bias CH4-Based ECR Etching of InP.- 13.3.2 Addition of Cl to CH4-Based ECR Etching of InP.- 13.3.3 Low Temperature Cl-Based Etching.- 13.4 Measurement of Plasma Heating for InP Etching.- 13.4.1 Wafer Heating During High-Density Plasma Etching.- 13.4.2 Impact of Plasma Heating for InP Etching.- 13.4.3 Effects of Chamber Pressure and Wafer Temperature on Etch Rate.- 13.5 Application to Via Hole Etching.- 13.5.1 Etch Mask and Etch Characteristics.- 13.5.2 Etching Slot Vias Using a Photoresist Mask.- 13.5.3 OES for Endpoint.- 13.6 Summary.- References.- 14 Device Damage During Low Temperature High-Density Plasma Chemical Vapor Deposition.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and Discussion.- 14.4 Summary and Conclusions.- References.- 15 Dry Etching of Magnetic Materials.- 15.1 Introduction.- 15.2 Ion Milling.- 15.3 Cl2-Based ICP Etching of NiFe and Related Materials.- 15.4 Copper Dry Etching in Cl2/Ar.- 15.5 CO/NH3 Etching of Magnetic Materials.- 15.6 ECR and ICP Etching of NiMnSb.- 15.7 Dry Etching o1 Some Fundamental Aspects of Plasma-Assisted Etching.- 1.1 Introduction.- 1.2 The Evolution of Plasma Etching Equipment.- 1.2.1 The "Barrel" Systems.- 1.2.2 Planar and Cylindrical Diode Systems.- 1.2.3 Planar Triode Systems.- 1.2.4 Dual Frequency Planar Triode Systems.- 1.2.5 Inductively Coupled Plasmas, Wave Generated Plasmas, etc.- 1.3 The Role of Ions in Reactive Ion Etching.- 1.3.1 Ion-Assisted Gas-Surface Chemistry and the Resulting Etching Anisotropy.- 1.3.2 Mechanistic Aspects of Ion-Assisted Gas-Surface Chemistry.- 1.3.3 Other Factors That Influence Etching Anisotropy.- 1.4 The Influence of the Reactor Walls and Other Surfaces.- 1.4.1 The Etching Process.- 1.4.2 Polymer Deposition.- 1.4.3 Surface-Catalyzed Atom-Atom Recombination.- 1.5 Ion Beam-Based Methods.- 1.6 Summary.- References.- 2 Plasma Fundamentals for Materials Processing.- 2.1 Introduction.- 2.2 Single Particle Motion.- 2.3 Collision Processes.- 2.4 Velocity Distributions.- 2.5 Sheaths.- 2.6 Plasma Transport.- 2.7 Dielectric Properties.- 2.8 Plasma Sources for Thin Films Processing.- 2.8.1 Capacitive Sources.- 2.8.2 High Density Sources.- 2.8.3 Inductive Sources.- 2.8.4 ECR Sources.- 2.8.5 Helicon Sources.- 2.8.6 Wave Sources.- 2.8.7 Downstream Sources.- References.- 3 Plasma Modeling.- 3.1 Introduction.- 3.2 Historical Perspective.- 3.3 Plasma Modeling Issues.- 3.3.1 Well Mixed Reactor Models and Applications (0-D).- 3.3.2 One-Dimensional Models and Applications.- 3.3.3 Two-Dimensional Models and Applications.- 3.3.4 Three-Dimensional Models and Applications.- 3.3.5 2-D and 3-D Profile Evolution Models and Applications.- 3.4 Chemical Reaction Mechanisms.- 3.4.1 Gas-Phase Kinetic and Transport Processes.- 3.4.2 Surface Chemistry.- 3.4.3 Reaction Mechanism Validation, Tuning, and Reduction.- 3.4.4 Sample Reaction Mechanism.- 3.5 Examples of Application of Plasma Modeling to Design or Optimization.- 3.5.1 Optimization of Plasma Cleaning Process to Reduce Reactor Emissions.- 3.5.2 Optimization of Chemical Downstream Etch Process Conditions.- 3.5.3 Reactor Design: Scaling-Up from 200 to 300 mm Wafers.- 3.5.4 Mapping Pressure Gradients in Reactor Pump Port and Inlet Regions.- 3.6 Future Directions of Plasma Modeling.- References.- 4 Plasma Reactor Modeling.- 4.1 Introduction.- 4.2 Reactor Scale Model.- 4.2.1 A Review of Various Approaches.- 4.2.2 Global Model.- 4.2.3 Continuum Reactor Model.- 4.2.4 Hybrid Model.- 4.3 Feature Level Modeling.- 4.4 Database Needs.- 4.5 Concluding Remarks.- References.- 5 Overview of Plasma Diagnostic Techniques.- 5.1 Introduction.- 5.2 Plasma Electrical Characterization.- 5.2.1 Electrical Diagnostics.- 5.2.2 Microwave Diagnostic Techniques.- 5.2.3 Ion-Energy Analyzers.- 5.3 Optical Diagnostic Techniques.- 5.3.1 Optical Emission.- 5.3.2 Optical Absorption Techniques.- 5.3.3 Laser-Induced Fluorescence.- 5.3.4 Negative Ion Photodetachment.- 5.3.5 Optogalvanic Spectroscopy.- 5.3.6 Thomson Scattering.- References.- 6 Mass Spectrometric Characterization of Plasma Etching Processes.- 6.1 Introduction.- 6.2 Application to Fundamental Studies.- 6.2.1 Silicon/Fluorine.- 6.2.2 Silicon/Chlorine.- 6.2.3 Gallium Arsenide/Chlorine.- 6.3 Application in Etch Processing Reactors.- 6.3.1 General Description of Experiments.- 6.3.2 IV-IV Semiconductors.- 6.3.3 III-V Semiconductors.- 6.3.4 II-VI Semiconductors.- 6.3.5 Metals and Perovskites.- 6.3.6 Issues in Application and Interpretation.- 6.4 Summary and Future Directions.- References.- 7 Fundamentals of Plasma Process-Induced Charging and Damage.- 7.1 Introduction.- 7.2 The Origin of Pattern-Dependent Charging.- 7.2.1 Differences in Ion and Electron Angular Distributions.- 7.2.2 Charging as a Result of Current Imbalance.- 7.2.3 Electron Shading Effects.- 7.3 The Notching Effect.- 7.3.1 Observations and Mechanisms.- 7.3.2 Phenomena that Influence Notching.- 7.3.3 Results from Self-Consistent Charging Simulations.- 7.3.4 Validation.- 7.4 Other Profile Effects Influenced by Charging.- 7.4.1 Reactive Ion Etching Lag.- 7.4.2 Microtrenching.- 7.5 Gate Oxide Degradation.- 7.5.1 The Driving Force for Current Injection.- 7.5.2 Tunneling Current Transients.- 7.5.3 The Influence of Electron and Ion Temperature.- 7.6 Charging Reduction Methodology.- 7.7 Concluding Remarks.- 7.7.1 Historical Perspective.- 7.7.2 Will Charging Problems Persist?.- References.- 8 Surface Damage Induced by Dry Etching.- 8.1 Introduction.- 8.2 Surface Damage in Si.- 8.2.1 Changes in Electrical Characteristics due to Dry Etching.- 8.2.2 Defects Evaluated by Surface Analysis.- 8.2.3 Modeling of Etch-Induced Damage.- 8.3 Surface Damage in III-V Semiconductors.- 8.3.1 Damage Dependence on Etch Conditions.- 8.3.2 Effects of Etch Time and Materials on Defect Generation.- 8.3.3 Changes in Electrical and Optical Characteristics.- 8.4 Damage Removal.- 8.4.1 Wet Etching, Dry Etching, Thermal Annealing, and Two-Step Etching.- 8.4.2 Passivation by Low-Energy Reactive Species.- 8.5 Summary.- References.- 9 Photomask Etching.- 9.1 Introduction.- 9.2 Optical Lithography.- 9.2.1 Photomask Basics.- 9.2.2 Chrome Photomasks.- 9.2.3 MoSi Photomasks.- 9.2.4 Phase Shift Mask Technology.- 9.3 X-Ray Lithography.- 9.3.1 X-Ray Lithography Basics.- 9.3.2 Gold Absorber-Based Masks.- 9.3.3 Refractory Masks.- 9.3.4 Amorphous Refractory-Based Masks.- 9.3.5 Thermal Characteristics of a Mask Etch Process.- 9.3.6 Hard Mask Materials.- 9.4 SCALPEL.- 9.4.1 SCALPEL Basics.- 9.4.2 SCALPEL Mask Blank Processing.- 9.4.3 SCALPEL Mask Pattern Transfer.- 9.5 EUVL.- 9.5.1 EUVL Basics.- 9.5.2 EUVL Masks.- 9.5.3 EUV Mask Pattern Transfer.- 9.6 Ion Projection Lithography.- 9.6.1 Ion Projection Lithography Basics.- 9.6.2 IPL Masks.- 9.6.3 IPL Mask Pattern Transfer.- 9.7 IPL Mask Distortion Issues.- 9.8 Conclusion.- References.- 10 Bulk Si Micromachining for Integrated Microsystems and MEMS Processing.- 10.1 Introduction.- 10.2 Etch Technologies.- 10.2.1 Wet Chemical Etching.- 10.2.2 Plasma Etching.- 10.2.3 Reactive Ion Etching.- 10.2.4 High-Density Plasma Etching.- 10.2.5 Deep Reactive Ion Etching.- 10.3 ECR Results.- 10.3.1 ECR Experimental.- 10.3.2 ECR Process Parameters.- 10.3.3 ECR Process Applications.- 10.4 DRIE Results.- 10.4.1 DRIE versus ICP Etch Comparison.- 10.4.2 Etch Rates and Selectivity to Masking Materials.- 10.4.3 Aspect Ratio Dependent Etching (ARDE) in DRIE.- 10.4.4 Etch Selectivities.- 10.5 DRIE Applications.- 10.5.1 Chemical Sensing Devices.- 10.5.2 Advanced Packaging.- 10.5.3 SOI DRIE Etching.- 10.6 Conclusions.- References.- 11 Plasma Processing of III-V Materials.- 11.1 Introduction.- 11.2 Dry Etching Techniques.- 11.2.1 Ion Beam Etching.- 11.2.2 Reactive Ion Etching.- 11.2.3 High-Density Plasma Reactive Ion Etching.- 11.3 Masking Materials and Methods.- 11.4 Dry Etching Chemistries.- 11.5 Dry Etching of GaAs and Related Materials.- 11.6 Dry Etching of InP and Related Materials.- 11.7 Dry Etching of GaN and Related Materials.- 11.8 Selective Dry Etching of III-V Materials.- 11.8.1 GaAs on AlGaAs.- 11.8.2 InGaAs on InAlAs.- 11.8.3 GaN on AlGaN.- 11.9 Conclusion.- References.- 12 Ion Beam Etching of Compound Semiconductors.- 12.1 Introduction.- 12.2 Definitions.- 12.2.1 Ion Beam Etching.- 12.2.2 Reactive Ion Beam Etching.- 12.2.3 Chemically Assisted Ion Beam Etching.- 12.2.4 Sputter Yield.- 12.3 Ion Sources.- 12.4 Historic Development.- 12.5 Grid Design, Beam Uniformity, and Divergence.- 12.6 Brief Overview of Etching Kinetics and Chemistry.- 12.7 Surface Quality and Etch Masking.- 12.8 RIBE Etch Technology.- 12.8.1 RIBE of GaAs and AlGaAs.- 12.8.2 RIBE of InP.- 12.8.3 RIBE of InGaAsP and InP.- 12.8.4 RIBE of AlGaInP, GaInP and AlGaInAs.- 12.8.5 RIBE of (Al,Ga)Sb, (In,Ga)Sb and InAsSb.- 12.8.6 RIBE of GaP and GaN.- 12.8.7 RIBE of ZnSe and ZnS.- 12.9 CAIBE Etch Technology.- 12.9.1 CAIBE of GaAs.- 12.9.2 CAIBE of AlGaAs.- 12.9.3 CAIBE of InP and InGaAsP.- 12.9.4 CAIBE of AlGaInP and AlGaInAs.- 12.9.5 CAIBE of (Al,Ga)Sb and InSb.- 12.9.6 CAIBE of (Al,Ga)N.- 12.10 Endpoint Detection.- 12.11 Damage.- References.- 13 Dry Etching of InP Vias.- 13.1 Introduction.- 13.2 Past Difficulties in Obtaining High Rate Etching for InP.- 13.2.1 High Bias CH4-based Etching of InP.- 13.2.2 Elevated Temperature Cl-based Etching of InP.- 13.3 High Density Plasma Sources for High InP Etch Rate.- 13.3.1 Reduced Bias CH4-Based ECR Etching of InP.- 13.3.2 Addition of Cl to CH4-Based ECR Etching of InP.- 13.3.3 Low Temperature Cl-Based Etching.- 13.4 Measurement of Plasma Heating for InP Etching.- 13.4.1 Wafer Heating During High-Density Plasma Etching.- 13.4.2 Impact of Plasma Heating for InP Etching.- 13.4.3 Effects of Chamber Pressure and Wafer Temperature on Etch Rate.- 13.5 Application to Via Hole Etching.- 13.5.1 Etch Mask and Etch Characteristics.- 13.5.2 Etching Slot Vias Using a Photoresist Mask.- 13.5.3 OES for Endpoint.- 13.6 Summary.- References.- 14 Device Damage During Low Temperature High-Density Plasma Chemical Vapor Deposition.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and Discussion.- 14.4 Summary and Conclusions.- References.- 15 Dry Etching of Magnetic Materials.- 15.1 Introduction.- 15.2 Ion Milling.- 15.3 Cl2-Based ICP Etching of NiFe and Related Materials.- 15.4 Copper Dry Etching in Cl2/Ar.- 15.5 CO/NH3 Etching of Magnetic Materials.- 15.6 ECR and ICP Etching of NiMnSb.- 15.7 Dry Etching of LaCaMnOx
650 #0 - SUBJECT
Keyword Plasma engineering.
650 #0 - SUBJECT
Keyword Electronic circuits.
650 #0 - SUBJECT
Keyword Integrated circuits
General subdivision Design and construction.
650 #0 - SUBJECT
Keyword Plasma etching.
650 #0 - SUBJECT
Keyword Plasma spraying.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Reference Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection Type Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Full call number Accession number Date last seen Koha item type
      Not For Loan Reference Collection Central Library, Sikkim University Central Library, Sikkim University Reference 13/03/2018 M.R. Books 14958.57 621.044 SHU/H 46131 23/09/2022 Reference Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha