Quantum mechanics/ (Record no. 176805)

MARC details
000 -LEADER
fixed length control field 00331nam a2200133Ia 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3540277064
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.12
Item number BAS/Q
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Basdevant, Jean-Louis
245 #0 - TITLE STATEMENT
Title Quantum mechanics/
Statement of responsibility, etc. Jean-Louis Basdevant
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. Berlin:
Name of publisher, distributor, etc. Springer,
Date of publication, distribution, etc. 2005.
300 ## - PHYSICAL DESCRIPTION
Extent 511 p.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note <br/>1. Quantum Phenomena 1<br/>1.1 The Franck and Hertz Experiment 3<br/>1.2 Interference of Matter Waves 5<br/>1.2.1 The Young Double-Slit Experiment 6<br/>1.2.2 Interference of Atoms in a Double-Slit Experiment.... 7<br/>1.2.3 Probabilistic Aspect of Quantum Interference 8<br/>1.3 The Experiment of Davisson and Germer 10<br/>1.3.1 Diffraction of X Rays by a Crystal 10<br/>1.3.2 Electron Diffraction 12<br/>1.4 Summary of a Few Important Ideas 15<br/>Further Reading 15<br/>Exercises 16<br/>2. The Wave Function and the Schrodinger Equation 17<br/>2.1 The Wave Function 18<br/>2.1.1 Description of the State of a Particle 18<br/>2.1.2 Position Measurement of the Particle 19<br/>2.2 Interference and the Superposition Principle 20<br/>2.2.1 De Broglie Waves 20<br/>2.2.2 The Superposition Principle 21<br/>2.2.3 The Wave Equation in Vacuum 22<br/>2.3 Free Wave Packets 24<br/>2.3.1 * Definition of a Wave Packet 24<br/>2.3.2 Fourier Transformation 24<br/>2.3.3 Structure of the Wave Packet 25<br/>2.3.4 Propagation of a Wave Packet: the Group Velocity ... 26<br/>2.3.5 Propagation of a Wave Packet:<br/>Average Position and Spreading 27<br/>2.4 Momentum Measurements and Uncertainty Relations 28<br/>2.4.1 The Momentum Probability Distribution 29<br/>2.4.2 Heisenberg Uncertainty Relations 30<br/>2.5 The Schrodinger Equation 31XII Contents<br/>2.5.1 Equation of Motion 32<br/>2.5.2 Particle in a Potential: Uncertainty Relations 32<br/>2.5.3 Stability of Matter 33<br/>2.6 Momentum Measurement in a Time-of-Flight Experiment ... 34<br/>Further Reading 36<br/>Exercises<br/>3. Physical Quantities and Measurements • • 39<br/>3.1 Measurements in Quantum Mechanics 40<br/>3.1.1 The Measurement Procedure 40<br/>3.1.2 Experimental Facts 41<br/>3.1.3 Reinterpretation of Position<br/>and Momentum Measurements 41<br/>3.2 Physical Quantities and Observables 42<br/>3.2.1 Expectation Value of a Physical Quantity 42<br/>3.2.2 Position and Momentum Observables 43<br/>3.2.3 Other Observables: the Correspondence Principle 44<br/>3.2.4 Commutation of Observables 44<br/>3.3 Possible Results of a Measurement 45<br/>3.3.1 Eigenfunctions and Eigenvalues of an Observable 45<br/>3.3.2 Results of a Measurement<br/>and Reduction of the Wave Packet 46<br/>3.3.3 Individual Versus Multiple Measurements 47<br/>3.3.4 Relation to Heisenberg Uncertainty Relations 47<br/>3.3.5 Measurement and Coherence of Quantum Mechanics.. 48<br/>3.4 Energy Eigenfunctions and Stationary States 48<br/>3.4.1 Isolated Systems: Stationary States 49<br/>3.4.2 Energy Eigenstates and Time Evolution oO<br/>3.5 The Probability Current<br/>3.6 Crossing Potential Barriers ^2<br/>3.6.1 The Eigenstates of the Hamiltonian 52<br/>3.6.2 Boundary Conditions at the Discontinuities<br/>of the Potential<br/>3.6.3 Reflection and Transmission on a Potential Step 54<br/>3.6.4 Potential Barrier and Tunnel Effect 56<br/>3.7 Summary of Chapters 2 and 3<br/>Further Reading<br/>. 60<br/>Exercises<br/>4. Quantization of Energy in Simple Systems 53<br/>4.1 Bound States and Scattering States 53<br/>4.1.1 Stationary States of the Schrodinger Equation 54<br/>4.1.2 Bound States<br/>4.1.3 Scattering States<br/>4.2 The One Dimensional Harmonic Oscillator 56Contents XIII<br/>4.2.1 Definition and Classical Motion 66<br/>4.2.2 The Quantum Harmonic Oscillator 67<br/>4.2.3 Examples 69<br/>4.3 Square-Well Potentials 70<br/>4.3.1 Relevance of Square Potentials 70<br/>4.3.2 Bound States in a One-Dimensional<br/>Square-Well Potential 71<br/>4.3.3 Infinite Square Well 73<br/>4.3.4 Particle in a Three-Dimensional Box 74<br/>4.4 Periodic Boundary Conditions 75<br/>4.4.1 A One-Dimensional Example 75<br/>4.4.2 Extension to Three Dimensions 77<br/>4.4.3 Introduction of Phase Space 78<br/>4.5 The Double Well Problem and the Ammonia Molecule 78<br/>4.5.1 Model of the NH3 Molecule 79<br/>4.5.2 Wave Functions 79<br/>4.5.3 Energy Levels 81<br/>4.5.4 The Tunnel Effect and the Inversion Phenomenon .... 82<br/>4.6 Other Applications of the Double Well 84<br/>Further Reading 86<br/>Exercises 87<br/>5. Principles of Quantum Mechanics 89<br/>5.1 Hilbert Space 90<br/>5.1.1 The State Vector 90<br/>5.1.2 Scalar Products and the Dirac Notations 90<br/>5.1.3 Examples 91<br/>5.1.4 Bras and Kets, Brackets 92<br/>5.2 Operators in Hilbert Space 92<br/>5.2.1 Matrix Elements of an Operator 92<br/>5.2.2 Adjoint Operators and Hermitian Operators 93<br/>5.2.3 Eigenvectors and Eigenvalues 94<br/>5.2.4 Summary: Syntax Rules in Dirac's Formalism 95<br/>5.3 The Spectral Theorem 95<br/>5.3.1 Hilbertian Bases 95<br/>5.3.2 Projectors and Closure Relation 96<br/>5.3.3 The Spectral Decomposition of an Operator 96<br/>5.3.4 Matrix Representations 97<br/>5.4 Measurement of Physical Quantities 99<br/>5.5 The Principles of Quantum Mechanics 100<br/>5.6 Structure of Hilbert Space 104<br/>5.6.1 Tensor Products of Spaces 104<br/>5.6.2 The Appropriate Hilbert Space 105<br/>5.6.3 Properties of Tensor Products 105<br/>5.6.4 Operators in a Tensor Product Space 106XIV Contents<br/>5.6.5 Simple Examples 106<br/>5.7 Reversible Evolution and the Measurement Proce.ss 107<br/>Further Reading 110<br/>Exercises Ill<br/>6. Two-State Systems, Principle of the Maser 115<br/>6.1 Two-Dimensional Hilbert Space 115<br/>6.2 A Familiar Example: the Polarization of Light 116<br/>6.2.1 Polarization States of a Photon 116<br/>6.2.2 Measurement of Photon Polarizations 118<br/>6.2.3 Successive Measurements and "Quantum Logic" 119<br/>6.3 The Model of the Ammonia Molecule 120<br/>6.3.1 Restriction to a Two-Dimensional Hilbert Space 120<br/>6.3.2 The Basis {|^s),|Vm>} 121<br/>6.3.3 The Basis {|V-'r)> \^l)} 123<br/>6.4 The Ammonia Molecule in an Electric Field 123<br/>6.4.1 The Coupling of NH3 to an Electric Field 124<br/>6.4.2 Energy Levels in a Fixed Electric Field 125<br/>6.4.3 Force Exerted on the Molecule<br/>by an Inhomogeneous Field 127<br/>6.5 Oscillating Fields and Stimulated Emission 129<br/>6.6 Principle and Applications of Masers 131<br/>6.6.1 Amplifier 131<br/>6.6.2 Oscillator 132<br/>6.6.3 Atomic Clocks 132<br/>Further Reading 132<br/>Exercises 133<br/>7. Commutation of Observables 135<br/>7.1 Commutation Relations 136<br/>7.2 Uncertainty Relations 137<br/>7.3 Ehrenfest's Theorem 138<br/>7.3.1 Evolution of the Expectation Value of an Observable.. 138<br/>7.3.2 Particle in a Potential V(r) 139<br/>7.3.3 Constants of Motion 140<br/>7.4 Commuting Observables 142<br/>7.4.1 Existence of a Common Eigenbasis<br/>for Commuting Observables 142<br/>7.4.2 Complete Set of Commuting Observables(CSCO).... 142<br/>7.4.3 Completely Prepared Quantum State 143<br/>7.4.4 Symmetries of the Hamiltonian<br/>and Search of Its Eigenstates 145<br/>7.5 Algebraic Solution of the Harmonic-Oscillator Problem 148<br/>7.5.1 Reduced Variables 148<br/>7.5.2 Annihilation and Creation Operators a and 148Contents XV<br/>7.5.3 Eigenvalues of the Number Operator N 149<br/>7.5.4 Eigenstates 150<br/>Further Reading 151<br/>Exercis&s 152<br/>8. The Stern-Gerlach Experiment 157<br/>8.1 Principle of the Experiment 157<br/>8.1.1 Classical Analysis 157<br/>8.1.2 Experimental Results 159<br/>8.2 The Quantum Description of the Problem 161<br/>8.3 The Observables and find 163<br/>8.4 Discussion 165<br/>8.4.1 Incompatibility of Measurements Along Different Axes 165<br/>8.4.2 Classical Versus Quantum Analysis 166<br/>8.4.3 Measurement Along an Arbitrary Axis 167<br/>8.5 Complete Description of the Atom 168<br/>8.5.1 Hilbert Space 168<br/>8.5.2 Representation of States and Observables 169<br/>8.5.3 Energy of the Atom in a Magnetic Field 170<br/>8.6 Evolution of the Atom in a Magnetic Field 170<br/>8.6.1 Schrodinger Equation 170<br/>8.6.2 Evolution in a Uniform Magnetic Field 171<br/>8.6.3 Explanation of the Stern-Gerlach Experiment 173<br/>8.7 Conclusion 175<br/>Further Reading 175<br/>Exercises 176<br/>9. Approximation Methods «<br/>9.1 Perturbation Theory 177<br/>9.1.1 Definition of the Problem 177<br/>9.1.2 Power Expansion of Energies and Eigenstates 178<br/>9.1.3 First-Order Perturbation in the Nondegenerate Case .. 179<br/>9.1.4 First-Order Perturbation in the Degenerate Case 179<br/>9.1.5 First-Order Perturbation to the Eigenstates 180<br/>9.1.6 Second-Order Perturbation to the Energy Levels 181<br/>9.1.7 Examples 181<br/>9.1.8 Remarks on the Convergence of Perturbation Theory ..182<br/>9.2 The Variational Method 183<br/>9.2.1 The Ground State 183<br/>9.2.2 Other Levels 184<br/>9.2.3 Examples of Applications of the Variational Method .. 185<br/>Exercises 187XVI Contents<br/>10. Angular Momentum 189<br/>10.1 Orbital Angular Momentum and the Coniiniitation Relations 190<br/>10.2 Eigenvalues of Angular Monicntuni 190<br/>10.2.1 The Observables and J. and the Basis States |J, ni) 191<br/>10.2.2 The Operators .J± 192<br/>10.2.3 Action of J± on the States \j. ni) 192<br/>10.2.4 Quantization of and m 193<br/>10.2.5 Measurement of and Jy .. 195<br/>10.3 Orbital Angular Momentum 196<br/>10.3.1 The Quantum Numbers in and(are Integers 196<br/>10.3.2 Spherical Coordinates 197<br/>10.3.3 Eigenfunctions of and L.: the Spherical Harmonics 198<br/>10.3.4 Examples of Spherical Harmonics 199<br/>10.3.5 Example: Rotational Energy of a Diatomic Molecule .. 200<br/>10.4 Angular Momentum and Magnetic Moment 201<br/>10.4.1 Orbital Angular Momentum and Magnetic Moment... 202<br/>10.4.2 Generalization to Other Angular Momenta 203<br/>10.4.3 What Should we Think<br/>about Half-Integer Values ofjand 7n ? 204<br/>Further Reading 204<br/>Exercises 205<br/>11. Initial Description of Atoms 207<br/>11.1 The Two-Body Problem; Relative Motion 208<br/>11.2 Motion in a Central Potential 210<br/>11.2.1 Spherical Coordinates 210<br/>11.2.2 Eigenfunctions Common to H, and Lz 211<br/>11.3 The Hydrogen Atom 215<br/>11.3.1 Orders of Magnitude:<br/>Appropriate Units in Atomic Physics 215<br/>11.3.2 The Dimensionless Radial Equation 216<br/>11.3.3 Spectrum of Hydrogen 219<br/>11.3.4 Stationary States of the Hydrogen Atom 220<br/>-11.3.5 Dimensions and Orders of Magnitude 221<br/>11.3.6 Time Evolution of States of Low Energies 223<br/>11.4 Hydrogen-Like Atoms 224<br/>11.5 Muonic Atoms 224<br/>11.6 Spectra of Alkali Atoms 226<br/>Further Reading 227<br/>Exercises 228Contents XVII<br/>12. Spin 1/2 and Magnetic Resonance 231<br/>12.1 The Hilbert Space of Spin 1/2 232<br/>12.1.1 Spin Observables 233<br/>12.1.2 Representation in a Particular Basis 233<br/>12.1.3 Matrix Representation 234<br/>12.1.4 Arbitrary Spin State 234<br/>12.2 Complete Description of a Spin-1/2 Particle 235<br/>12.2.1 Hilbert Space 235<br/>12.2.2 Representation of States and Observables 235<br/>12.3 Spin Magnetic Moment 236<br/>12.3.1 The Stern-Gerlach Experiment 236<br/>12.3.2 Anomalous Zeeman Effect 237<br/>12.3.3 Magnetic Moment of Elementary Particles 237<br/>12.4 Uncorrelated Space and Spin Variables 238<br/>12.5 Magnetic Resonance 239<br/>12.5.1 Larmor Precession in a Fixed Magnetic Field Rq 239<br/>12.5.2 Superposition of a Fixed Field and a Rotating Field .. 240<br/>12.5.3 Rabi's Experiment 242<br/>12.5.4 Applications of Magnetic Resonance 244<br/>12.5.5 Rotation of a Spin 1/2 Particle by 27r 245<br/>Further Reading 246<br/>Exercises 247<br/>13. Addition of Angular Momenta,<br/>Fine and Hyperfine Structure of Atomic Spectra 249<br/>13.1 Addition of Angular Momenta 249<br/>13.1.1 The Total-Angular Momentum Operator 249<br/>13.1.2 Factorized and Coupled Bases 250<br/>13.1.3 A Simple Case: the Addition of Two Spins of 1/2 251<br/>13.1.4 Addition of Two Arbitrary Angular Momenta 254<br/>13.1.5 One-Electron Atoms, Spectroscopic Notations 258<br/>13.2 Fine Structure of Monovalent Atoms 258<br/>13.3 Hyperfine Structure; the 21cm Line of Hydrogen 261<br/>13.3.1 Interaction Energy 261<br/>13.3.2 Perturbation Theory 262<br/>13.3.3 Diagonalization of 263<br/>13.3.4 The Effect of an External Magnetic Field 265<br/>13.3.5 The 21cm Line in Astrophysics 265<br/>Further Reading 268<br/>Exercises 269XVIII Contents<br/>14. Entangled States, EPR Paradox and Bell's Inequality 2^3<br/>Written in collaboration with Philippe Grangier<br/>14.1 The EPR Paradox and Bell's Inequality 274<br/>14.1.1 "God Does Not Play Dice" 274<br/>14.1.2 The EPR Argument 275<br/>14.1.3 Bell's Inequality 278<br/>14.1.4 Experimental Tests 281<br/>14.2 Quantum Cryptography • • • 282<br/>14.2.1 The Communication Between Alice and Bob 282<br/>14.2.2 The Quantum No cloning Theorem 285<br/>14.2.3 Present Experimental Setups 286<br/>14.3 The Quantum Computer 287<br/>14.3.1 The Quantum Bits, or "'Q-Bits" 287<br/>14.3.2 The Algorithm of Peter Shor 288<br/>14.3.3 Principle of a Quantum Computer 289<br/>14.3.4 Decoherence 290<br/>Further Reading 290<br/>901<br/>Exercises<br/>15. The Lagrangian and Hamiltonian Formalisms,<br/>Lorentz Force in Quantum Mechanics 293<br/>15.1 Lagrangian Formalism and the Least-Action Principle 294<br/>15.1.1 Least Action Principle 294<br/>15.1.2 Lagrange Equations 295<br/>15.1.3 Energy 297<br/>15.2 Canonical Formalism of Hamilton 297<br/>15.2.1 Conjugate Momenta 297<br/>15.2.2 Canonical Equations 298<br/>15.2.3 Poisson Brackets 299<br/>15.3 Analytical Mechanics and Quantum Mechanics 300<br/>15.4 Classical Charged Particles in an Electromagnetic Field 301<br/>15.5 Lorentz Force in Quantum Mechanics 302<br/>15.5.1 Hamiltonian ^^2<br/>1*5.5.2 Gauge Invariance 303<br/>15.5.3 The Hydrogen Atom Without Spin<br/>in a Uniform Magnetic Field • • 304<br/>15.5.4 Spin-1/2 Particle in an Electromagnetic Field 305<br/>Further Reading<br/>Exercises<br/>16. Identical Particles and the Pauli Principle 309<br/>16.1 Indistinguishability of Two Identical Particles 310<br/>16.1.1 Identical Particles in Classical Physics 310<br/>16.1.2 The Quantum Problem 310<br/>16.2 Two-Particle Systems; the Exchange Operator 312Contents XIX<br/>16.2.1 The Hilbert Space for the Two Particle System 312<br/>16.2.2 The Exchange Operator<br/>Between Two Identical Particles 312<br/>16.2.3 Symmetry of the States 313<br/>16.3 The Pauli Principle 314<br/>16.3.1 The Case of Two Particles 314<br/>16.3.2 Independent Fermions and Exclusion Principle 315<br/>16.3.3 The Case of N Identical Particles 316<br/>16.3.4 Time Evolution 317<br/>16.4 Physical Consequences of the Pauli Principle 317<br/>16.4.1 Exchange Force Between Two Fermions 318<br/>16.4.2 The Ground State<br/>of N Identical Independent Particles 318<br/>16.4.3 Behavior of Fermion and Boson Sj'stems<br/>at Low Temperature 320<br/>16.4.4 Stimulated Emission and the Laser Effect 322<br/>16.4.5 Uncertainty Relations for a System of N Fermions.... 323<br/>16.4.6 Complex Atoms and Atomic Shells 324<br/>Further Reading 326<br/>Exercises 327<br/>17. The Evolution of Systems 331<br/>Written in collaboration with Gilbert Grynberg<br/>17.1 Time-Dependent Perturbation Theory 332<br/>17.1.1 Transition Probabilities 332<br/>17.1.2 Evolution Equations 332<br/>17.1.3 Perturbative Solution 333<br/>17.1.4 First-Order Solution: the Born Approximation 334<br/>17.1.5 Particular Cases 334<br/>17.1.6 Perturbative and Exact Solutions 335<br/>17.2 Interaction of an Atom with an Electromagnetic Wave 336<br/>17.2.1 The Electric-Dipole Approximation 336<br/>17.2.2 Justification of the Electric Dipole Interaction 337<br/>17.2.3 Absorption of Energy by an Atom 338<br/>17.2.4 Selection Rules 339<br/>17.2.5 Spontaneous Emission 339<br/>17.2.6 Control of Atomic Motion by Light 341<br/>17.3 Decay of a System 343<br/>17.3.1 The Radioactivity of ^'^Fe 343<br/>17.3.2 The Fermi Golden Rule 345<br/>17.3.3 Orders of Magnitude 346<br/>17.3.4 Behavior for Long Times 347<br/>17.4 The Time-Energy Uncertainty Relation 350<br/>17.4.1 Isolated Systems and Intrinsic Interpretations 350<br/>17.4.2 Interpretation of Landau and Peierls 351XX Contents<br/>17.4.3 The Einstein Bohr Controver.sy 352<br/>Further Reading 353<br/>Exercises 353<br/>18. Scattering Processes 357<br/>18.1 Concept of Cross Section 358<br/>18.1.1 Definition of Cross Section 358<br/>18.1.2 Classical Calculation 359<br/>18.1.3 Examples 360<br/>18.2 Quantum Calculation in the Born Approximation 361<br/>18.2.1 Asymptotic States 361<br/>18.2.2 Transition Probability 362<br/>18.2.3 Scattering Cross Section 363<br/>18.2.4 Validity of the Born Approximation 364<br/>18.2.5 Example: the Yukawa Potential 365<br/>18.2.6 Range of a Potential in Quantum Mechanics 366<br/>18.3 Exploration of Composite Systems 367<br/>18.3.1 Scattering Off a Bound State and the Form Factor ... 367<br/>18.3.2 Scattering by a Charge Distribution 368<br/>18.4 General Scattering Theory 372<br/>18.4.1 Scattering States 372<br/>18.4.2 The Scattering Amplitude 373<br/>18.4.3 The Integral Equation for Scattering 374<br/>18.5 Scattering at Low Energy 375<br/>18.5.1 The Scattering Length 375<br/>18.5.2 Explicit Calculation of a Scattering Length 376<br/>18.5.3 The Case of Identical Particles 377<br/>Further Reading 378<br/>Exercises 378<br/>19. Qualitative Physics on a Macroscopic Scale 381<br/>Written in collaboration with Alfred Vidal-Madjar<br/>19.1 Confined Particles and Ground State Energy 382<br/>19.1.1 The Quantum Pressure 382<br/>19.1.2 Hydrogen Atom 383<br/>19.1.3 7V-Fermion Systems and Complex Atoms 383<br/>19.1.4 Molecules, Liquids and Solids .. 384<br/>19.1.5 Hardness of a Solid 385<br/>19.2 Gravitational Versus Electrostatic Forces 386<br/>19.2.1 Screening of Electrostatic Interactions 386<br/>19.2.2 Additivity of Gravitational Interactions 387<br/>19.2.3 Ground State of a Gravity-Dominated Object 388<br/>19.2.4 Liquefaction of a Solid and the Height of Mountains .. 390<br/>19.3 White Dwarfs, Neutron Stars<br/>and the Gravitational Catastrophe 392Contents XXI<br/>19.3.1 White Dwarfs and the Chandrasekhar* Mass 392<br/>19.3.2 Neutron Stars 394<br/>Further Reading 396<br/>20. Early History of Quantum Mechanics 397<br/>20.1 The Origin of Quantum Concepts 397<br/>20.1.1 Planck's Radiation Law 397<br/>20.1.2 Photons 398<br/>20.2 The Atomic Spectrum 398<br/>20.2.1 Empirical Regularities of Atomic Spectra 398<br/>20.2.2 The Structure of Atoms 399<br/>20.2.3 The Bohr Atom 399<br/>20.2.4 The Old Theory of Quanta 400<br/>20.3 Spin 400<br/>20.4 Heisenberg's Matrices 401<br/>20.5 Wave Mechanics 403<br/>20.6 The Mathematical Formalization 404<br/>20.7 Some Important Steps in More Recent Years 405<br/>Further Reading 406<br/>Appendix A. Concepts of Probability Theory 407<br/>1 Fundamental Concepts 407<br/>2 Examples of Probability Laws 408<br/>2.1 Discrete Laws 408<br/>2.2 Continuous Probability Laws<br/>in One or Several Variables 408<br/>3 Random Variables 409<br/>3.1 Definition 409<br/>3.2 Conditional Probabilities 410<br/>3.3 Independent Random Variables 411<br/>3.4 Binomial Law and the Gaussian Approximation 411<br/>4 Moments of Probability Distributions 412<br/>4.1 Mean Value or Expectation Value 412<br/>4.2 Variance and Mean Square Deviation 412<br/>4.3 ^ Bienayme-Tchebycheff Inequality 413<br/>4.4 Experimental Verification of a Probability Law 413<br/>Exercises 414<br/>Appendix B. Dirac Distribution, Fourier Transformation .... 417<br/>1 Dirac Distribution, or <5 "Function" 417<br/>1.1 Definition of <5(.t) 417<br/>1.2 Examples of Functions Which Tend to (5(a:) 418<br/>1.3 Properties of S{x) 419<br/>2 Distributions 420<br/>2.1 The Space S 420XXII Contents<br/>2.2 Linear Fimctionals 420<br/>2.3 Derivative of a Di.stributioii 421<br/>2.4 Convolution Product 422<br/>3 Fourier Transformation 422<br/>3.1 Definition 422<br/>3.2 Fourier Transform of a Gaussian 423<br/>3.3 Inversion of the Fourier Transformation 423<br/>3.4 Parseval-Plancherel Theorem 424<br/>3.5 Fourier Transform of a Distribution 425<br/>3.6 Uncertainty Relation 426<br/>Exercises 427<br/>Appendix C. Operators in Infinite-Dimensional Spaces 429<br/>1 Matrix Elements of an Operator 429<br/>2 Continuous Bases 430<br/>Appendix D. The Density Operator 435<br/>1 Pure States 436<br/>1.1 A Mathematical Tool: the Tiace of an Operator 436<br/>1.2 The Density Operator of Pure States 437<br/>1.3 Alternative Formulation of Quantum Mechanics<br/>for Pure States 438<br/>2 Statistical Mixtures 439<br/>2.1 A Particular Case: an Unpolarized Spin-1/2 System .. 439<br/>2.2 The Density Operator for Statistical Mixtures 440<br/>3 Examples of Density Operators 441<br/>3.1 The Micro-Canonical and Canonical Ensembles 441<br/>3.2 The Wigner Distribution of a Spinless Point Particle.. 442<br/>4 Entangled Systems 444<br/>4.1 Reduced Density Operator 444<br/>4.2 Evolution of a Reduced Density Operator 444<br/>4.3 Entanglement and Measurement 445<br/>Further Reading 446<br/>Exerdses 446<br/>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Koha item type Public note
        Science Library, Sikkim University Science Library, Sikkim University Science Library General Section 29/08/2016 530.12 BAS/Q P31807 29/08/2016 General Books Science Library Books For SU Science Library
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha