Econometrics and data analysis for developing countries/ (Record no. 175884)

MARC details
000 -LEADER
fixed length control field 05627cam a2200241 a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0415093996
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0415094003 (pbk.)
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 30.015195
Item number MUK/E
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Mukherjee, Chandan.
245 10 - TITLE STATEMENT
Title Econometrics and data analysis for developing countries/
Statement of responsibility, etc. Chandan Mukherjee, Howard White, and Marc Wuyts.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. London ;
-- New York :
Name of publisher, distributor, etc. Routledge,
Date of publication, distribution, etc. 1998.
300 ## - PHYSICAL DESCRIPTION
Extent xviii, 496 p. ;
Dimensions 24 cm. +
Accompanying material 1 computer disk (3 1/2 in.)
440 #0 - SERIES
Title Priorities for development economics
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note ntroduction<br/>1 The purpose of this book<br/>2 The approach of this book: an example<br/>Part I Foundations of data analysis<br/>1 Model specification and applied research<br/>1.1 Introduction<br/>1.2 Model specification and statistical inference<br/>1.3 The role of data in model specification:<br/>traditional modelling<br/>1.4 The role of data in model specification:<br/>modern approaches<br/>1.5 The time dimension in data<br/>1.6 Summary of main points<br/>2 Modelling an average<br/>2.1 Introduction<br/>2.2 Kinds of averages<br/>2.3 The assumptions of the model<br/>2.4 The sample mean as best linear unbiased<br/>estimator (BLUE)<br/>2.5 Normality and the maximum likelihood principle<br/>2.6 Inference from a sample of a normal distribution<br/>2.7 Summary of main points<br/>Appendix 2.1: Properties of mean and variance<br/>Appendix 2.2: Standard sampling distributions<br/>3 Outliers, skewness and data transformations<br/>3.1 Introduction<br/>3.2 The least squares principle and the concept<br/>of resistance<br/>3.3 Mean-based versus order-based sample statistics<br/>3.4 Detecting non-normality in data<br/>3.5 Data transformations to eliminate skewness<br/>3.6 Summary of main points<br/>Part II Regression and data analysis<br/>4 Data analysis and simple regression<br/>4.1 Introduction<br/>4.2 Modelling simple regression<br/>4.3 Linear regression and the least squares principle<br/>4.4 Inference from classical normal linear<br/>regression model<br/>4.5 Regression with graphics: checking the model<br/>assumptions<br/>4.6 Regression through the origin<br/>4.7 Outliers, leverage and influence<br/>4.8 Transformation towards linearity<br/>4.9 Summary of main points =<br/>5 Partial regression: interpreting multiple regression coefficients<br/>5.1 Introduction<br/>5.2 The price of food and the demand for<br/>manufactured goods in India<br/>5.3 Least squares and the sample multiple regression line<br/>5.4 Partial regression and partial correlation<br/>5.5 The linear regression model<br/>5.6 The /-test in multiple regression<br/>5.7 Fragility analysis: making sense of<br/>regression coefficients<br/>5.8 Summary of main points<br/>6 Model selection and misspecification in multiple regression<br/>6.1 Introduction<br/>6.2 Griffin's aid versus savings model: the omitted<br/>variable bias<br/>6.3 Omitted variable bias: the theory<br/>6.4 Testing zero restrictions<br/>6.5 Testing non-zero linear restrictions<br/>6.6 Tests of parameter stability<br/>6.7 The use of dummy variables<br/>6.8 Summary of main points<br/>Part III Analysing cross-section data<br/>7 Dealing with heteroscedasticity<br/>7.1 Introduction<br/>7.2 Diagnostic plots: looking for heteroscedasticity<br/>7.3 Testing for heteroscedasticity<br/>7.4 Transformations towards homoscedasticity<br/>7.5 Dealing with genuine heteroscedasticity: weighted<br/>least squares and heteroscedastic standard errors<br/>7.6 Summary of main points<br/>8 Categories, counts and measurements<br/>8.1 Introduction<br/>8.2 Regression on a categorical variable: using<br/>dummy variables n<br/>8.3 Contingency tables: association between<br/>categorical variables<br/>8.4 Partial association and interaction<br/>8.5 Multiple regression on categorical variables<br/>8.6 Summary of main points<br/>9 Logit transformation, modelling and regression<br/>9.1 Introduction<br/>9.2 The logit transformation<br/>9.3 Logit modelling with contingency tables =><br/>9.4 The linear probability model versus logit regression<br/>9.5 Estimation and hypothesis testing in logit regression<br/>9.6 Graphics and residual analysis in logit regression<br/>9.7 /Summary of main points<br/>Part IV Regression with time-series data<br/>10 Trends, spurious regressions and transformations<br/>to stationarity<br/>10.1 Introduction<br/>10.2 Stationarity and non-stationarity<br/>10.3 Random walks and spurious regression<br/>10.4 Testing for stationarity<br/>10.5 Transformations to stationarity<br/>10.6 Summary of main points<br/>Appendix 10.1: Generated DSP and TSP series for exercises<br/>11 Misspecification and autocorrelation<br/>11.1 Introduction<br/>11.2 What is autocorrelation and why is it a problem?<br/>11.3 Why do we get autocorrelation?<br/>11.4 Detecting autocorrelation<br/>11.5 What to do about autocorrelation<br/>11.6 Summary of main points<br/>Appendix 11.1: Derivation of variance and covariance<br/>for AR(1) model<br/>12 Cointegration and the error correction model<br/>12.1 Introduction<br/>12.2 What is cointegration?<br/>12.3 Testing for cointegration<br/>12.4 The error correction model (ECM)<br/>12.5 Summary of main points<br/>Part V Simultaneous equation models<br/>13 Misspecification bias from single equation estimation<br/>13.1 Introduction<br/>13.2 Simultaneity bias in a supply and demand model<br/>13.3 Simultaneity bias: the theory<br/>13.4 The Granger and Sims tests for causality and<br/>concepts of exogeneity<br/>13.5 The identification problem<br/>13.6 Summary of main points<br/>14 Estimating simultaneous equation models<br/>14.1 Introduction<br/>14.2 Recursive models<br/>14.3 Indirect least squares<br/>14.4 Instrumental variable estimation and two-stage<br/>least squares<br/>14.5 Estimating the consumption function in a<br/>simultaneous system<br/>14.6 Full information estimation techniques<br/>14.7 Summary of main points
650 #0 - SUBJECT
Keyword Econometrics.
650 #0 - SUBJECT
Keyword Econometric models.
650 #0 - SUBJECT
Keyword Social sciences
General subdivision Statistical methods.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name White, Howard,
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Wuyts, Marc.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Date last checked out Koha item type
        Central Library, Sikkim University Central Library, Sikkim University General Book Section 29/08/2016 330.015195 MUK/E P30881 03/07/2023 02/06/2023 General Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha