Quantum inspired intelligent systems / (Record no. 1625)

MARC details
000 -LEADER
fixed length control field 12495cam a22001454a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783540785316 (hardcover : alk. paper)
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 004.1
Item number NED/Q
245 00 - TITLE STATEMENT
Title Quantum inspired intelligent systems /
Statement of responsibility, etc. Nadia Nedjah, Leandro dos Santos Coelho, Luiza de Macedo Mourelle (eds.).
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. Berlin :
Name of publisher, distributor, etc. Springer,
Date of publication, distribution, etc. 2008.
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 153 p.
Dimensions 25 cm.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1 Gaussian Quantum-Behaved Particle Swarm Optimization<br/>Applied to Fuzzy FID Controller Design<br/>Leandro dos Santos Coelho, Nadia Nedjah, Luiza de Macedo Mourelle<br/>1.1 Introduction<br/>1.2 Fuzzy Control Algorithm .<br/>1.2.1 Fuzzy PID controller<br/>1.3 Quantum-behaved Particle Swarm Optimization<br/>1.3.1 QPSO using Gaussian distribution<br/>1.4 Case Study and Simulation Results<br/>1.4.1 Description of Control Valve<br/>1.4.2 Simulation results<br/>1.5 Conclusion and Future Work<br/>2 Quantum-inspired genetic algorithms for flow shop<br/>scheduling<br/>Ling Wang^ Bin-bin Li.<br/>2.1 Introduction<br/>2.2 Permutation flow shop scheduling<br/>2.2.1 Problem statement<br/>2.2.2 GA-based multi-objective PFSS .<br/>2.3 Quantum-inspired genetic algorithm<br/>2.4 Hybrid QGA for single-objective PFSS<br/>2.4.1 QGA for single-objective PFSS<br/>2.4.2 Permutation-based GA<br/>2.4.3 Hybrid QGA for PFSS<br/>2.5 Hybrid QGA for multi-objective FSSP<br/>2.5.1 Solution Evaluation in Multi-objective Sense<br/>2.5.2 Population Trimming in QGA and PGA<br/>2.5.3 Genetic Operators and Stopping Criteria in QGA and PGA .<br/>2.5.4 Population Upadting in QGA and PGA<br/>VI Contents<br/>2.5.5 Procedure of QGA and PGA<br/>2.5.6 Hybrid Quantum-Inspired Genetic Algorithm<br/>2.6 Performance metrics of multi-objective optimization<br/>2.6.1 Overall Non-dominated Vector Generation {ONVG)<br/>2.6.2 C Metric (CM)<br/>2.6.3 Distance iMetrics {Dav and Dmax)<br/>2.6.4 Tan's Spacing (TS)<br/>2.6.5 Maximum Spread {MS)<br/>2.6.6 Average Quality {AQ)<br/>2.7 Simulation results and comparisons on single-objective PFFS<br/>2.8 Simulation results and comparisons on multi-objective PFFS<br/>2.8.1 Testing on existing problems in the literature<br/>2.8.2 Testing and comparisons on randomly generated instances<br/>2.9 Conclusions and future work<br/>]<br/>3 Quantum Simulataneous Recurrent Networks for Content<br/>Addressable Memory<br/>Raheel Allauddin, Stuart Boehmer, Elizabeth C. Behrman, Kavitha<br/>Gaddam, James E. Steak<br/>3.1 Introduction<br/>3.2 The Hopfield Model<br/>3.3 THE QUANTUM SYSTEM<br/>3.4 Mapping the Quantum System onto the Hopheld iNet<br/>3.5 QHN As An Information Propagator for a Microtubulin Architecture<br/>3.6 QHN As Simultaneous Recurrent Network<br/>3.7 Application: The CNOT Gate<br/>4 Quantum Intelligent Mobile System<br/>Chunlin Chen, Daoyi Dong<br/>4.1 Introduction<br/>4.2 Prerequisite<br/>4.2.1 Intelligent mobile system<br/>4.2.2 Fundamentals of quantum mechanics<br/>4.3 Architecture of QIMS based on multi-quantum-agent<br/>4.3.1 Intelligent agent in quantum system<br/>4.3.2 Multi-quantum-agent system<br/>4.3.3 Architecture of QIMS based on MQAS<br/>4.4 Hardware of typical QIMS<br/>4.4.1 Quantum computers<br/>4.4.2 Classical-quantum hybrid components<br/>4.5 Planning for QIMS based on Grover algorithm<br/>4.5.1 A general framework of planning tasks .<br/>4.5.2 Grover algorithm<br/>4.5.3 Planning using Grover algorithm<br/>4.6 Learning for QIMS using QRL<br/>4.6.1 QRL<br/>4.6.2 Learning in unknown environment using QRL<br/>4.7 Discussion or ^he applications of QIMS<br/>4.8 Conclusions<br/>5 Quantum Associative Pattern Retrieval<br/>Carlo A. Trugenberger, Cristina M. Diamantini.<br/>5.1 Introduction<br/>5.2 Quantizing Neural Networks<br/>5.3 Quantum Associative Memories<br/>5.4 Phase Structure<br/>5.5 Summary<br/>6 Quantum-Inspired Evolutionary Algorithm for Numerical<br/>Optimization<br/>Andre Vargas Aba da Cruz, Marley M. B. R. Vellasco, Marco Aurelio<br/>C. Pacheco<br/>6.1 Introduction<br/>6.2 The Quantum-Inspired Evolutionary Algorithm using a Real<br/>Number Representation<br/>6.2.1 The Quantum Population<br/>6.2.2 Quantum Individuals Observation<br/>6.2.3 Updating the Quantum Population<br/>6.3 Case Studies<br/>6.3.1 Optimization of Benchmark Functions<br/>6.3.2 Discussion<br/>6.4 Conclusions and Future Works<br/>7 Calibration of the VGSSD Option Pricing Model<br/>using a Quantum-inspired Evolutionary Algorithm<br/>Kai Fan, Conall O'Sullivan, Anthony Brabazon, Michael O'Neill, Sean<br/>McCarraghy<br/>7.1 Introduction<br/>7.2 The Quantum-inspired Genetic Algorithm<br/>7.2.1 Representing a Quantum System<br/>7.2.2 Real-valued quantum-inspired evolutionary algorithms.<br/>7.3 Option Pricing Model Calibration<br/>7.4 Experimental Approach<br/>7.5 Results<br/>7.6 Conclusions1 Gaussian Quantum-Behaved Particle Swarm Optimization<br/>Applied to Fuzzy FID Controller Design<br/>Leandro dos Santos Coelho, Nadia Nedjah, Luiza de Macedo Mourelle<br/>1.1 Introduction<br/>1.2 Fuzzy Control Algorithm .<br/>1.2.1 Fuzzy PID controller<br/>1.3 Quantum-behaved Particle Swarm Optimization<br/>1.3.1 QPSO using Gaussian distribution<br/>1.4 Case Study and Simulation Results<br/>1.4.1 Description of Control Valve<br/>1.4.2 Simulation results<br/>1.5 Conclusion and Future Work<br/>2 Quantum-inspired genetic algorithms for flow shop<br/>scheduling<br/>Ling Wang^ Bin-bin Li.<br/>2.1 Introduction<br/>2.2 Permutation flow shop scheduling<br/>2.2.1 Problem statement<br/>2.2.2 GA-based multi-objective PFSS .<br/>2.3 Quantum-inspired genetic algorithm<br/>2.4 Hybrid QGA for single-objective PFSS<br/>2.4.1 QGA for single-objective PFSS<br/>2.4.2 Permutation-based GA<br/>2.4.3 Hybrid QGA for PFSS<br/>2.5 Hybrid QGA for multi-objective FSSP<br/>2.5.1 Solution Evaluation in Multi-objective Sense<br/>2.5.2 Population Trimming in QGA and PGA<br/>2.5.3 Genetic Operators and Stopping Criteria in QGA and PGA .<br/>2.5.4 Population Upadting in QGA and PGA<br/>VI Contents<br/>2.5.5 Procedure of QGA and PGA<br/>2.5.6 Hybrid Quantum-Inspired Genetic Algorithm<br/>2.6 Performance metrics of multi-objective optimization<br/>2.6.1 Overall Non-dominated Vector Generation {ONVG)<br/>2.6.2 C Metric (CM)<br/>2.6.3 Distance iMetrics {Dav and Dmax)<br/>2.6.4 Tan's Spacing (TS)<br/>2.6.5 Maximum Spread {MS)<br/>2.6.6 Average Quality {AQ)<br/>2.7 Simulation results and comparisons on single-objective PFFS<br/>2.8 Simulation results and comparisons on multi-objective PFFS<br/>2.8.1 Testing on existing problems in the literature<br/>2.8.2 Testing and comparisons on randomly generated instances<br/>2.9 Conclusions and future work<br/>]<br/>3 Quantum Simulataneous Recurrent Networks for Content<br/>Addressable Memory<br/>Raheel Allauddin, Stuart Boehmer, Elizabeth C. Behrman, Kavitha<br/>Gaddam, James E. Steak<br/>3.1 Introduction<br/>3.2 The Hopfield Model<br/>3.3 THE QUANTUM SYSTEM<br/>3.4 Mapping the Quantum System onto the Hopheld iNet<br/>3.5 QHN As An Information Propagator for a Microtubulin Architecture<br/>3.6 QHN As Simultaneous Recurrent Network<br/>3.7 Application: The CNOT Gate<br/>4 Quantum Intelligent Mobile System<br/>Chunlin Chen, Daoyi Dong<br/>4.1 Introduction<br/>4.2 Prerequisite<br/>4.2.1 Intelligent mobile system<br/>4.2.2 Fundamentals of quantum mechanics<br/>4.3 Architecture of QIMS based on multi-quantum-agent<br/>4.3.1 Intelligent agent in quantum system<br/>4.3.2 Multi-quantum-agent system<br/>4.3.3 Architecture of QIMS based on MQAS<br/>4.4 Hardware of typical QIMS<br/>4.4.1 Quantum computers<br/>4.4.2 Classical-quantum hybrid components<br/>4.5 Planning for QIMS based on Grover algorithm<br/>4.5.1 A general framework of planning tasks .<br/>4.5.2 Grover algorithm<br/>4.5.3 Planning using Grover algorithm<br/>4.6 Learning for QIMS using QRL<br/>4.6.1 QRL<br/>4.6.2 Learning in unknown environment using QRL<br/>4.7 Discussion or ^he applications of QIMS<br/>4.8 Conclusions<br/>5 Quantum Associative Pattern Retrieval<br/>Carlo A. Trugenberger, Cristina M. Diamantini.<br/>5.1 Introduction<br/>5.2 Quantizing Neural Networks<br/>5.3 Quantum Associative Memories<br/>5.4 Phase Structure<br/>5.5 Summary<br/>6 Quantum-Inspired Evolutionary Algorithm for Numerical<br/>Optimization<br/>Andre Vargas Aba da Cruz, Marley M. B. R. Vellasco, Marco Aurelio<br/>C. Pacheco<br/>6.1 Introduction<br/>6.2 The Quantum-Inspired Evolutionary Algorithm using a Real<br/>Number Representation<br/>6.2.1 The Quantum Population<br/>6.2.2 Quantum Individuals Observation<br/>6.2.3 Updating the Quantum Population<br/>6.3 Case Studies<br/>6.3.1 Optimization of Benchmark Functions<br/>6.3.2 Discussion<br/>6.4 Conclusions and Future Works<br/>7 Calibration of the VGSSD Option Pricing Model<br/>using a Quantum-inspired Evolutionary Algorithm<br/>Kai Fan, Conall O'Sullivan, Anthony Brabazon, Michael O'Neill, Sean<br/>McCarraghy<br/>7.1 Introduction<br/>7.2 The Quantum-inspired Genetic Algorithm<br/>7.2.1 Representing a Quantum System<br/>7.2.2 Real-valued quantum-inspired evolutionary algorithms.<br/>7.3 Option Pricing Model Calibration<br/>7.4 Experimental Approach<br/>7.5 Results<br/>7.6 Conclusions1 Gaussian Quantum-Behaved Particle Swarm Optimization<br/>Applied to Fuzzy FID Controller Design<br/>Leandro dos Santos Coelho, Nadia Nedjah, Luiza de Macedo Mourelle<br/>1.1 Introduction<br/>1.2 Fuzzy Control Algorithm .<br/>1.2.1 Fuzzy PID controller<br/>1.3 Quantum-behaved Particle Swarm Optimization<br/>1.3.1 QPSO using Gaussian distribution<br/>1.4 Case Study and Simulation Results<br/>1.4.1 Description of Control Valve<br/>1.4.2 Simulation results<br/>1.5 Conclusion and Future Work<br/>2 Quantum-inspired genetic algorithms for flow shop<br/>scheduling<br/>Ling Wang^ Bin-bin Li.<br/>2.1 Introduction<br/>2.2 Permutation flow shop scheduling<br/>2.2.1 Problem statement<br/>2.2.2 GA-based multi-objective PFSS .<br/>2.3 Quantum-inspired genetic algorithm<br/>2.4 Hybrid QGA for single-objective PFSS<br/>2.4.1 QGA for single-objective PFSS<br/>2.4.2 Permutation-based GA<br/>2.4.3 Hybrid QGA for PFSS<br/>2.5 Hybrid QGA for multi-objective FSSP<br/>2.5.1 Solution Evaluation in Multi-objective Sense<br/>2.5.2 Population Trimming in QGA and PGA<br/>2.5.3 Genetic Operators and Stopping Criteria in QGA and PGA .<br/>2.5.4 Population Upadting in QGA and PGA<br/>VI Contents<br/>2.5.5 Procedure of QGA and PGA<br/>2.5.6 Hybrid Quantum-Inspired Genetic Algorithm<br/>2.6 Performance metrics of multi-objective optimization<br/>2.6.1 Overall Non-dominated Vector Generation {ONVG)<br/>2.6.2 C Metric (CM)<br/>2.6.3 Distance iMetrics {Dav and Dmax)<br/>2.6.4 Tan's Spacing (TS)<br/>2.6.5 Maximum Spread {MS)<br/>2.6.6 Average Quality {AQ)<br/>2.7 Simulation results and comparisons on single-objective PFFS<br/>2.8 Simulation results and comparisons on multi-objective PFFS<br/>2.8.1 Testing on existing problems in the literature<br/>2.8.2 Testing and comparisons on randomly generated instances<br/>2.9 Conclusions and future work<br/>]<br/>3 Quantum Simulataneous Recurrent Networks for Content<br/>Addressable Memory<br/>Raheel Allauddin, Stuart Boehmer, Elizabeth C. Behrman, Kavitha<br/>Gaddam, James E. Steak<br/>3.1 Introduction<br/>3.2 The Hopfield Model<br/>3.3 THE QUANTUM SYSTEM<br/>3.4 Mapping the Quantum System onto the Hopheld iNet<br/>3.5 QHN As An Information Propagator for a Microtubulin Architecture<br/>3.6 QHN As Simultaneous Recurrent Network<br/>3.7 Application: The CNOT Gate<br/>4 Quantum Intelligent Mobile System<br/>Chunlin Chen, Daoyi Dong<br/>4.1 Introduction<br/>4.2 Prerequisite<br/>4.2.1 Intelligent mobile system<br/>4.2.2 Fundamentals of quantum mechanics<br/>4.3 Architecture of QIMS based on multi-quantum-agent<br/>4.3.1 Intelligent agent in quantum system<br/>4.3.2 Multi-quantum-agent system<br/>4.3.3 Architecture of QIMS based on MQAS<br/>4.4 Hardware of typical QIMS<br/>4.4.1 Quantum computers<br/>4.4.2 Classical-quantum hybrid components<br/>4.5 Planning for QIMS based on Grover algorithm<br/>4.5.1 A general framework of planning tasks .<br/>4.5.2 Grover algorithm<br/>4.5.3 Planning using Grover algorithm<br/>4.6 Learning for QIMS using QRL<br/>4.6.1 QRL<br/>4.6.2 Learning in unknown environment using QRL<br/>4.7 Discussion or ^he applications of QIMS<br/>4.8 Conclusions<br/>5 Quantum Associative Pattern Retrieval<br/>Carlo A. Trugenberger, Cristina M. Diamantini.<br/>5.1 Introduction<br/>5.2 Quantizing Neural Networks<br/>5.3 Quantum Associative Memories<br/>5.4 Phase Structure<br/>5.5 Summary<br/>6 Quantum-Inspired Evolutionary Algorithm for Numerical<br/>Optimization<br/>Andre Vargas Aba da Cruz, Marley M. B. R. Vellasco, Marco Aurelio<br/>C. Pacheco<br/>6.1 Introduction<br/>6.2 The Quantum-Inspired Evolutionary Algorithm using a Real<br/>Number Representation<br/>6.2.1 The Quantum Population<br/>6.2.2 Quantum Individuals Observation<br/>6.2.3 Updating the Quantum Population<br/>6.3 Case Studies<br/>6.3.1 Optimization of Benchmark Functions<br/>6.3.2 Discussion<br/>6.4 Conclusions and Future Works<br/>7 Calibration of the VGSSD Option Pricing Model<br/>using a Quantum-inspired Evolutionary Algorithm<br/>Kai Fan, Conall O'Sullivan, Anthony Brabazon, Michael O'Neill, Sean<br/>McCarraghy<br/>7.1 Introduction<br/>7.2 The Quantum-inspired Genetic Algorithm<br/>7.2.1 Representing a Quantum System<br/>7.2.2 Real-valued quantum-inspired evolutionary algorithms.<br/>7.3 Option Pricing Model Calibration<br/>7.4 Experimental Approach<br/>7.5 Results<br/>7.6 Conclusions
650 #0 - SUBJECT
Keyword Quantum computers.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Date last checked out Koha item type
        Central Library, Sikkim University Central Library, Sikkim University General Book Section 31/05/2016 004.1 P42495 14/07/2018 14/07/2018 General Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha