Introduction to computational earthquake engineering/ (Record no. 153706)

MARC details
000 -LEADER
fixed length control field 00334nam a2200121Ia 4500
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 551.22
Item number HOR/I
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Hori, Muneo
245 #0 - TITLE STATEMENT
Title Introduction to computational earthquake engineering/
Statement of responsibility, etc. Muneo Hori
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. London:
Name of publisher, distributor, etc. Imperial College,
Date of publication, distribution, etc. 2006.
300 ## - PHYSICAL DESCRIPTION
Extent x, 330 p.
Other physical details ill.;
Dimensions 25 cm.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1 Solid Continuum Mechanics 3 --<br/>1.1 Spring Problem 4 --<br/>1.2 Pole Problem 5 --<br/>1.3 Continuum Problem 7 --<br/>2 Finite Element Method 13 --<br/>2.1 Overview of FEM 14 --<br/>2.2 Discretization of Function 17 --<br/>2.3 Formulation of FEM 19 --<br/>2.4 Major Numerical Techniques Used in FEM 23 --<br/>2.4.1 Shape function 23 --<br/>2.4.2 Isoparametric element 24 --<br/>2.4.3 Gauss integral 25 --<br/>2.5 Algorithm Used to Solve A Matrix Equation of FEM 26 --<br/>2.5.1 Direct solvers 27 --<br/>2.5.2 Iterative solvers 28 --<br/>2.5.3 Algorithms used to solve a non-linear equation 30 --<br/>3 Stochastic Modeling 33 --<br/>3.1 Formulation of A Stochastic Variational Problem 34 --<br/>3.2 Analysis Methods of A Stochastic Variational Problem 37 --<br/>3.2.1 Bounding medium analysis 37 --<br/>3.2.2 Spectral method 39 --<br/>II Strong Ground Motion 43 --<br/>4 The Wave Equation for Solids 45 --<br/>4.1 Basics of the Wave Equation 46 --<br/>4.2 Analytic Solutions of Particular Wave Problems 50 --<br/>4.2.1 Out-of-plane shear wave 51 --<br/>4.2.2 In-plane wave 55 --<br/>4.2.3 Plane wave in three-dimensional setting 58 --<br/>4.3 Numerical Analysis of the Wave Equation 60 --<br/>4.3.1 Algorithms used for time integration 61 --<br/>4.3.2 Stability of time integration 63 --<br/>5 Analysis of Strong Ground Motion 65 --<br/>5.1 Stochastic Modeling of Underground Structures 66 --<br/>5.2 Bounding Medium Theory 67 --<br/>5.3 Singular Perturbation Expansion 70 --<br/>5.4 Formulation of Macro-Micro Analysis Method 72 --<br/>5.5 Verification of Macro-Micro Analysis Method 75 --<br/>5.5.1 Validation of bounding medium theory 75 --<br/>5.5.2 Validation of singular perturbation expansion 79 --<br/>5.5.3 Validation of macro-micro analysis method 83 --<br/>6 Simulation of Strong Ground Motion 89 --<br/>6.1 Summary of Macro-Micro Analysis Method 91 --<br/>6.2 VFEM for Macro-Analysis and Micro-Analysis 92 --<br/>6.2.1 VFEM 93 --<br/>6.2.2 VFEM for macro-analysis 94 --<br/>6.2.3 VFEM for micro-analysis 98 --<br/>6.2.4 Link from macro-analysis to micro-analysis 101 --<br/>6.3 Simulation of Actual Earthquakes 102 --<br/>6.3.1 Modeling 103 --<br/>6.3.2 Comparison of synthesized waveform with observed waveform 107 --<br/>6.3.3 Distribution of simulated strong ground motion 108 --<br/>6.3.4 The comparison of three-dimensional analysis and one-dimensional analysis 113 --<br/>III Faulting 119 --<br/>7 Elasto-Plasticity and Fracture Mechanics 121 --<br/>7.1 Numerical Analysis of Failure 121 --<br/>7.2 Elasto-Plasticity 123 --<br/>7.3 Fracture Mechanics 126 --<br/>8 Analysis of Faulting 131 --<br/>8.1 NL-SSFEM 135 --<br/>8.1.1 SSFEM 135 --<br/>8.1.2 NL-SSFEM 137 --<br/>8.1.3 Bounding medium approximation 138 --<br/>8.1.4 Formulation of NL-SSFEM 140 --<br/>8.2 Numerical Algorithms of NL-SSFEM 142 --<br/>8.2.1 Matrix Jacobi method 142 --<br/>8.2.2 Standardized KL expansion 143 --<br/>8.2.3 Numerical perturbation during analysis of stochastic model 144 --<br/>8.3 Validation of NL-SSFEM Simulation 146 --<br/>8.4 Example of Fault Simulation of NL-SSFEM 150 --<br/>9 Simulation of Faulting 159 --<br/>9.1 Problem Setting for Fault Simulation 160 --<br/>9.1.1 Input data 160 --<br/>9.1.2 Output results 162 --<br/>9.2 Reproduction of Model Experiments 163 --<br/>9.2.1 Simulation of two-dimensional model experiment 163 --<br/>9.2.2 Simulation of three-dimensional model experiment 168 --<br/>9.3 Simulation of Actual Faults 179 --<br/>9.3.1 Simulation of the Nojima Fault 179 --<br/>9.3.2 Parametric study of stochastic parameters 186 --<br/>9.3.3 Simulation of the Chelungpu Fault 189 --<br/>10 BEM Simulation of Faulting 195 --<br/>10.1 Problem Setting for Fault Simulation 196 --<br/>10.1.1 Perturbation expansion of field variables with respect to crack extension 198 --<br/>10.1.2 Crack driving forces 199 --<br/>10.1.3 Solution of crack path problem 202 --<br/>10.2 Formulation of Boundary Element Method 204 --<br/>10.3 Verification of Analysis Method 206 --<br/>10.3.1 Use of analytic solution 206 --<br/>10.3.2 Use of numerical computation 209 --<br/>10.4 Reproduction of Model Experiments 215 --<br/>10.4.1 Simulation of model experiment of [Bray et al. (1994)] 216 --<br/>10.4.2 Simulation of model experiment of [Tani (1994)] 217 --<br/>IV Advanced Topics 221 --<br/>11 Integrated Earthquake Simulation 223 --<br/>11.1 System of Integrated Earthquake Simulation 224 --<br/>11.2 GIS 228 --<br/>11.3 Construction of Computer Model 228 --<br/>11.3.1 Construction of ground structure model 229 --<br/>11.3.2 Construction of residential building model 232 --<br/>11.4 Example of Integrated Earthquake Simulation 235 --<br/>11.4.1 Modeling 235 --<br/>11.4.2 Strong ground motion simulation 236 --<br/>11.4.3 Structure response simulation 240 --<br/>12 Unified Visualization of Earthquake Simulation 243 --<br/>12.1 System for Unified Visualization 245 --<br/>12.1.1 Mediator 246 --<br/>12.1.2 Mediator maker 249 --<br/>12.2 IES for Unified Visualization 250 --<br/>12.3 Example of Unified Visualization 255 --<br/>13 Standardization of Earthquake Resistant Design 259 --<br/>13.1 Standardization of Description Style 260 --<br/>13.2 Description of Flow Chart in Terms of Object 261 --<br/>13.2.1 Reconstruction of a flow chart for general earthquake resistant designs 262 --<br/>13.2.2 Reconstruction of a flow chart for actual earthquake resistant design code 267 --<br/>13.3 Example of Standardization 271 --<br/>Appendix A Earthquake Mechanisms 279 --<br/>A.1 Plate Tectonics and Active Faults 279 --<br/>A.2 Earthquake as Wave Propagation 284 --<br/>A.2.1 Determination of input strong ground motion according to earthquake scenario 285 --<br/>A.2.2 Soil-structure interaction 287 --<br/>Appendix B Analytical Mechanics 289 --<br/>Appendix C Numerical Techniques of Solving Wave Equation 293 --<br/>C.1 Explicit Method and Implicit Method 294 --<br/>C.2 Analysis of Wave Equation Using FEM 296 --<br/>C.3 Absorption Boundary 299 --<br/>Appendix D Unified Modeling Language 303.
650 ## - SUBJECT
Keyword Earthquake engineering -- Mathematics.
650 ## - SUBJECT
Keyword Analyse numérique.
650 ## - SUBJECT
Keyword Génie parasismique -- Modèles mathématiques.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Koha item type
        Central Library, Sikkim University Central Library, Sikkim University General Book Section 28/08/2016 551.22 HOR/I P08487 28/08/2016 General Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha