Handbook of advanced plasma processing techniques /

Handbook of advanced plasma processing techniques / R.J. Shul, S.J. Pearton (eds.). - Berlin ; New York : Springer, c2000. - xvi, 653 p. : ill. ; 24 cm.

Includes bibliographical references and index.

1 Some Fundamental Aspects of Plasma-Assisted Etching.- 1.1 Introduction.- 1.2 The Evolution of Plasma Etching Equipment.- 1.2.1 The "Barrel" Systems.- 1.2.2 Planar and Cylindrical Diode Systems.- 1.2.3 Planar Triode Systems.- 1.2.4 Dual Frequency Planar Triode Systems.- 1.2.5 Inductively Coupled Plasmas, Wave Generated Plasmas, etc.- 1.3 The Role of Ions in Reactive Ion Etching.- 1.3.1 Ion-Assisted Gas-Surface Chemistry and the Resulting Etching Anisotropy.- 1.3.2 Mechanistic Aspects of Ion-Assisted Gas-Surface Chemistry.- 1.3.3 Other Factors That Influence Etching Anisotropy.- 1.4 The Influence of the Reactor Walls and Other Surfaces.- 1.4.1 The Etching Process.- 1.4.2 Polymer Deposition.- 1.4.3 Surface-Catalyzed Atom-Atom Recombination.- 1.5 Ion Beam-Based Methods.- 1.6 Summary.- References.- 2 Plasma Fundamentals for Materials Processing.- 2.1 Introduction.- 2.2 Single Particle Motion.- 2.3 Collision Processes.- 2.4 Velocity Distributions.- 2.5 Sheaths.- 2.6 Plasma Transport.- 2.7 Dielectric Properties.- 2.8 Plasma Sources for Thin Films Processing.- 2.8.1 Capacitive Sources.- 2.8.2 High Density Sources.- 2.8.3 Inductive Sources.- 2.8.4 ECR Sources.- 2.8.5 Helicon Sources.- 2.8.6 Wave Sources.- 2.8.7 Downstream Sources.- References.- 3 Plasma Modeling.- 3.1 Introduction.- 3.2 Historical Perspective.- 3.3 Plasma Modeling Issues.- 3.3.1 Well Mixed Reactor Models and Applications (0-D).- 3.3.2 One-Dimensional Models and Applications.- 3.3.3 Two-Dimensional Models and Applications.- 3.3.4 Three-Dimensional Models and Applications.- 3.3.5 2-D and 3-D Profile Evolution Models and Applications.- 3.4 Chemical Reaction Mechanisms.- 3.4.1 Gas-Phase Kinetic and Transport Processes.- 3.4.2 Surface Chemistry.- 3.4.3 Reaction Mechanism Validation, Tuning, and Reduction.- 3.4.4 Sample Reaction Mechanism.- 3.5 Examples of Application of Plasma Modeling to Design or Optimization.- 3.5.1 Optimization of Plasma Cleaning Process to Reduce Reactor Emissions.- 3.5.2 Optimization of Chemical Downstream Etch Process Conditions.- 3.5.3 Reactor Design: Scaling-Up from 200 to 300 mm Wafers.- 3.5.4 Mapping Pressure Gradients in Reactor Pump Port and Inlet Regions.- 3.6 Future Directions of Plasma Modeling.- References.- 4 Plasma Reactor Modeling.- 4.1 Introduction.- 4.2 Reactor Scale Model.- 4.2.1 A Review of Various Approaches.- 4.2.2 Global Model.- 4.2.3 Continuum Reactor Model.- 4.2.4 Hybrid Model.- 4.3 Feature Level Modeling.- 4.4 Database Needs.- 4.5 Concluding Remarks.- References.- 5 Overview of Plasma Diagnostic Techniques.- 5.1 Introduction.- 5.2 Plasma Electrical Characterization.- 5.2.1 Electrical Diagnostics.- 5.2.2 Microwave Diagnostic Techniques.- 5.2.3 Ion-Energy Analyzers.- 5.3 Optical Diagnostic Techniques.- 5.3.1 Optical Emission.- 5.3.2 Optical Absorption Techniques.- 5.3.3 Laser-Induced Fluorescence.- 5.3.4 Negative Ion Photodetachment.- 5.3.5 Optogalvanic Spectroscopy.- 5.3.6 Thomson Scattering.- References.- 6 Mass Spectrometric Characterization of Plasma Etching Processes.- 6.1 Introduction.- 6.2 Application to Fundamental Studies.- 6.2.1 Silicon/Fluorine.- 6.2.2 Silicon/Chlorine.- 6.2.3 Gallium Arsenide/Chlorine.- 6.3 Application in Etch Processing Reactors.- 6.3.1 General Description of Experiments.- 6.3.2 IV-IV Semiconductors.- 6.3.3 III-V Semiconductors.- 6.3.4 II-VI Semiconductors.- 6.3.5 Metals and Perovskites.- 6.3.6 Issues in Application and Interpretation.- 6.4 Summary and Future Directions.- References.- 7 Fundamentals of Plasma Process-Induced Charging and Damage.- 7.1 Introduction.- 7.2 The Origin of Pattern-Dependent Charging.- 7.2.1 Differences in Ion and Electron Angular Distributions.- 7.2.2 Charging as a Result of Current Imbalance.- 7.2.3 Electron Shading Effects.- 7.3 The Notching Effect.- 7.3.1 Observations and Mechanisms.- 7.3.2 Phenomena that Influence Notching.- 7.3.3 Results from Self-Consistent Charging Simulations.- 7.3.4 Validation.- 7.4 Other Profile Effects Influenced by Charging.- 7.4.1 Reactive Ion Etching Lag.- 7.4.2 Microtrenching.- 7.5 Gate Oxide Degradation.- 7.5.1 The Driving Force for Current Injection.- 7.5.2 Tunneling Current Transients.- 7.5.3 The Influence of Electron and Ion Temperature.- 7.6 Charging Reduction Methodology.- 7.7 Concluding Remarks.- 7.7.1 Historical Perspective.- 7.7.2 Will Charging Problems Persist?.- References.- 8 Surface Damage Induced by Dry Etching.- 8.1 Introduction.- 8.2 Surface Damage in Si.- 8.2.1 Changes in Electrical Characteristics due to Dry Etching.- 8.2.2 Defects Evaluated by Surface Analysis.- 8.2.3 Modeling of Etch-Induced Damage.- 8.3 Surface Damage in III-V Semiconductors.- 8.3.1 Damage Dependence on Etch Conditions.- 8.3.2 Effects of Etch Time and Materials on Defect Generation.- 8.3.3 Changes in Electrical and Optical Characteristics.- 8.4 Damage Removal.- 8.4.1 Wet Etching, Dry Etching, Thermal Annealing, and Two-Step Etching.- 8.4.2 Passivation by Low-Energy Reactive Species.- 8.5 Summary.- References.- 9 Photomask Etching.- 9.1 Introduction.- 9.2 Optical Lithography.- 9.2.1 Photomask Basics.- 9.2.2 Chrome Photomasks.- 9.2.3 MoSi Photomasks.- 9.2.4 Phase Shift Mask Technology.- 9.3 X-Ray Lithography.- 9.3.1 X-Ray Lithography Basics.- 9.3.2 Gold Absorber-Based Masks.- 9.3.3 Refractory Masks.- 9.3.4 Amorphous Refractory-Based Masks.- 9.3.5 Thermal Characteristics of a Mask Etch Process.- 9.3.6 Hard Mask Materials.- 9.4 SCALPEL.- 9.4.1 SCALPEL Basics.- 9.4.2 SCALPEL Mask Blank Processing.- 9.4.3 SCALPEL Mask Pattern Transfer.- 9.5 EUVL.- 9.5.1 EUVL Basics.- 9.5.2 EUVL Masks.- 9.5.3 EUV Mask Pattern Transfer.- 9.6 Ion Projection Lithography.- 9.6.1 Ion Projection Lithography Basics.- 9.6.2 IPL Masks.- 9.6.3 IPL Mask Pattern Transfer.- 9.7 IPL Mask Distortion Issues.- 9.8 Conclusion.- References.- 10 Bulk Si Micromachining for Integrated Microsystems and MEMS Processing.- 10.1 Introduction.- 10.2 Etch Technologies.- 10.2.1 Wet Chemical Etching.- 10.2.2 Plasma Etching.- 10.2.3 Reactive Ion Etching.- 10.2.4 High-Density Plasma Etching.- 10.2.5 Deep Reactive Ion Etching.- 10.3 ECR Results.- 10.3.1 ECR Experimental.- 10.3.2 ECR Process Parameters.- 10.3.3 ECR Process Applications.- 10.4 DRIE Results.- 10.4.1 DRIE versus ICP Etch Comparison.- 10.4.2 Etch Rates and Selectivity to Masking Materials.- 10.4.3 Aspect Ratio Dependent Etching (ARDE) in DRIE.- 10.4.4 Etch Selectivities.- 10.5 DRIE Applications.- 10.5.1 Chemical Sensing Devices.- 10.5.2 Advanced Packaging.- 10.5.3 SOI DRIE Etching.- 10.6 Conclusions.- References.- 11 Plasma Processing of III-V Materials.- 11.1 Introduction.- 11.2 Dry Etching Techniques.- 11.2.1 Ion Beam Etching.- 11.2.2 Reactive Ion Etching.- 11.2.3 High-Density Plasma Reactive Ion Etching.- 11.3 Masking Materials and Methods.- 11.4 Dry Etching Chemistries.- 11.5 Dry Etching of GaAs and Related Materials.- 11.6 Dry Etching of InP and Related Materials.- 11.7 Dry Etching of GaN and Related Materials.- 11.8 Selective Dry Etching of III-V Materials.- 11.8.1 GaAs on AlGaAs.- 11.8.2 InGaAs on InAlAs.- 11.8.3 GaN on AlGaN.- 11.9 Conclusion.- References.- 12 Ion Beam Etching of Compound Semiconductors.- 12.1 Introduction.- 12.2 Definitions.- 12.2.1 Ion Beam Etching.- 12.2.2 Reactive Ion Beam Etching.- 12.2.3 Chemically Assisted Ion Beam Etching.- 12.2.4 Sputter Yield.- 12.3 Ion Sources.- 12.4 Historic Development.- 12.5 Grid Design, Beam Uniformity, and Divergence.- 12.6 Brief Overview of Etching Kinetics and Chemistry.- 12.7 Surface Quality and Etch Masking.- 12.8 RIBE Etch Technology.- 12.8.1 RIBE of GaAs and AlGaAs.- 12.8.2 RIBE of InP.- 12.8.3 RIBE of InGaAsP and InP.- 12.8.4 RIBE of AlGaInP, GaInP and AlGaInAs.- 12.8.5 RIBE of (Al,Ga)Sb, (In,Ga)Sb and InAsSb.- 12.8.6 RIBE of GaP and GaN.- 12.8.7 RIBE of ZnSe and ZnS.- 12.9 CAIBE Etch Technology.- 12.9.1 CAIBE of GaAs.- 12.9.2 CAIBE of AlGaAs.- 12.9.3 CAIBE of InP and InGaAsP.- 12.9.4 CAIBE of AlGaInP and AlGaInAs.- 12.9.5 CAIBE of (Al,Ga)Sb and InSb.- 12.9.6 CAIBE of (Al,Ga)N.- 12.10 Endpoint Detection.- 12.11 Damage.- References.- 13 Dry Etching of InP Vias.- 13.1 Introduction.- 13.2 Past Difficulties in Obtaining High Rate Etching for InP.- 13.2.1 High Bias CH4-based Etching of InP.- 13.2.2 Elevated Temperature Cl-based Etching of InP.- 13.3 High Density Plasma Sources for High InP Etch Rate.- 13.3.1 Reduced Bias CH4-Based ECR Etching of InP.- 13.3.2 Addition of Cl to CH4-Based ECR Etching of InP.- 13.3.3 Low Temperature Cl-Based Etching.- 13.4 Measurement of Plasma Heating for InP Etching.- 13.4.1 Wafer Heating During High-Density Plasma Etching.- 13.4.2 Impact of Plasma Heating for InP Etching.- 13.4.3 Effects of Chamber Pressure and Wafer Temperature on Etch Rate.- 13.5 Application to Via Hole Etching.- 13.5.1 Etch Mask and Etch Characteristics.- 13.5.2 Etching Slot Vias Using a Photoresist Mask.- 13.5.3 OES for Endpoint.- 13.6 Summary.- References.- 14 Device Damage During Low Temperature High-Density Plasma Chemical Vapor Deposition.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and Discussion.- 14.4 Summary and Conclusions.- References.- 15 Dry Etching of Magnetic Materials.- 15.1 Introduction.- 15.2 Ion Milling.- 15.3 Cl2-Based ICP Etching of NiFe and Related Materials.- 15.4 Copper Dry Etching in Cl2/Ar.- 15.5 CO/NH3 Etching of Magnetic Materials.- 15.6 ECR and ICP Etching of NiMnSb.- 15.7 Dry Etching o1 Some Fundamental Aspects of Plasma-Assisted Etching.- 1.1 Introduction.- 1.2 The Evolution of Plasma Etching Equipment.- 1.2.1 The "Barrel" Systems.- 1.2.2 Planar and Cylindrical Diode Systems.- 1.2.3 Planar Triode Systems.- 1.2.4 Dual Frequency Planar Triode Systems.- 1.2.5 Inductively Coupled Plasmas, Wave Generated Plasmas, etc.- 1.3 The Role of Ions in Reactive Ion Etching.- 1.3.1 Ion-Assisted Gas-Surface Chemistry and the Resulting Etching Anisotropy.- 1.3.2 Mechanistic Aspects of Ion-Assisted Gas-Surface Chemistry.- 1.3.3 Other Factors That Influence Etching Anisotropy.- 1.4 The Influence of the Reactor Walls and Other Surfaces.- 1.4.1 The Etching Process.- 1.4.2 Polymer Deposition.- 1.4.3 Surface-Catalyzed Atom-Atom Recombination.- 1.5 Ion Beam-Based Methods.- 1.6 Summary.- References.- 2 Plasma Fundamentals for Materials Processing.- 2.1 Introduction.- 2.2 Single Particle Motion.- 2.3 Collision Processes.- 2.4 Velocity Distributions.- 2.5 Sheaths.- 2.6 Plasma Transport.- 2.7 Dielectric Properties.- 2.8 Plasma Sources for Thin Films Processing.- 2.8.1 Capacitive Sources.- 2.8.2 High Density Sources.- 2.8.3 Inductive Sources.- 2.8.4 ECR Sources.- 2.8.5 Helicon Sources.- 2.8.6 Wave Sources.- 2.8.7 Downstream Sources.- References.- 3 Plasma Modeling.- 3.1 Introduction.- 3.2 Historical Perspective.- 3.3 Plasma Modeling Issues.- 3.3.1 Well Mixed Reactor Models and Applications (0-D).- 3.3.2 One-Dimensional Models and Applications.- 3.3.3 Two-Dimensional Models and Applications.- 3.3.4 Three-Dimensional Models and Applications.- 3.3.5 2-D and 3-D Profile Evolution Models and Applications.- 3.4 Chemical Reaction Mechanisms.- 3.4.1 Gas-Phase Kinetic and Transport Processes.- 3.4.2 Surface Chemistry.- 3.4.3 Reaction Mechanism Validation, Tuning, and Reduction.- 3.4.4 Sample Reaction Mechanism.- 3.5 Examples of Application of Plasma Modeling to Design or Optimization.- 3.5.1 Optimization of Plasma Cleaning Process to Reduce Reactor Emissions.- 3.5.2 Optimization of Chemical Downstream Etch Process Conditions.- 3.5.3 Reactor Design: Scaling-Up from 200 to 300 mm Wafers.- 3.5.4 Mapping Pressure Gradients in Reactor Pump Port and Inlet Regions.- 3.6 Future Directions of Plasma Modeling.- References.- 4 Plasma Reactor Modeling.- 4.1 Introduction.- 4.2 Reactor Scale Model.- 4.2.1 A Review of Various Approaches.- 4.2.2 Global Model.- 4.2.3 Continuum Reactor Model.- 4.2.4 Hybrid Model.- 4.3 Feature Level Modeling.- 4.4 Database Needs.- 4.5 Concluding Remarks.- References.- 5 Overview of Plasma Diagnostic Techniques.- 5.1 Introduction.- 5.2 Plasma Electrical Characterization.- 5.2.1 Electrical Diagnostics.- 5.2.2 Microwave Diagnostic Techniques.- 5.2.3 Ion-Energy Analyzers.- 5.3 Optical Diagnostic Techniques.- 5.3.1 Optical Emission.- 5.3.2 Optical Absorption Techniques.- 5.3.3 Laser-Induced Fluorescence.- 5.3.4 Negative Ion Photodetachment.- 5.3.5 Optogalvanic Spectroscopy.- 5.3.6 Thomson Scattering.- References.- 6 Mass Spectrometric Characterization of Plasma Etching Processes.- 6.1 Introduction.- 6.2 Application to Fundamental Studies.- 6.2.1 Silicon/Fluorine.- 6.2.2 Silicon/Chlorine.- 6.2.3 Gallium Arsenide/Chlorine.- 6.3 Application in Etch Processing Reactors.- 6.3.1 General Description of Experiments.- 6.3.2 IV-IV Semiconductors.- 6.3.3 III-V Semiconductors.- 6.3.4 II-VI Semiconductors.- 6.3.5 Metals and Perovskites.- 6.3.6 Issues in Application and Interpretation.- 6.4 Summary and Future Directions.- References.- 7 Fundamentals of Plasma Process-Induced Charging and Damage.- 7.1 Introduction.- 7.2 The Origin of Pattern-Dependent Charging.- 7.2.1 Differences in Ion and Electron Angular Distributions.- 7.2.2 Charging as a Result of Current Imbalance.- 7.2.3 Electron Shading Effects.- 7.3 The Notching Effect.- 7.3.1 Observations and Mechanisms.- 7.3.2 Phenomena that Influence Notching.- 7.3.3 Results from Self-Consistent Charging Simulations.- 7.3.4 Validation.- 7.4 Other Profile Effects Influenced by Charging.- 7.4.1 Reactive Ion Etching Lag.- 7.4.2 Microtrenching.- 7.5 Gate Oxide Degradation.- 7.5.1 The Driving Force for Current Injection.- 7.5.2 Tunneling Current Transients.- 7.5.3 The Influence of Electron and Ion Temperature.- 7.6 Charging Reduction Methodology.- 7.7 Concluding Remarks.- 7.7.1 Historical Perspective.- 7.7.2 Will Charging Problems Persist?.- References.- 8 Surface Damage Induced by Dry Etching.- 8.1 Introduction.- 8.2 Surface Damage in Si.- 8.2.1 Changes in Electrical Characteristics due to Dry Etching.- 8.2.2 Defects Evaluated by Surface Analysis.- 8.2.3 Modeling of Etch-Induced Damage.- 8.3 Surface Damage in III-V Semiconductors.- 8.3.1 Damage Dependence on Etch Conditions.- 8.3.2 Effects of Etch Time and Materials on Defect Generation.- 8.3.3 Changes in Electrical and Optical Characteristics.- 8.4 Damage Removal.- 8.4.1 Wet Etching, Dry Etching, Thermal Annealing, and Two-Step Etching.- 8.4.2 Passivation by Low-Energy Reactive Species.- 8.5 Summary.- References.- 9 Photomask Etching.- 9.1 Introduction.- 9.2 Optical Lithography.- 9.2.1 Photomask Basics.- 9.2.2 Chrome Photomasks.- 9.2.3 MoSi Photomasks.- 9.2.4 Phase Shift Mask Technology.- 9.3 X-Ray Lithography.- 9.3.1 X-Ray Lithography Basics.- 9.3.2 Gold Absorber-Based Masks.- 9.3.3 Refractory Masks.- 9.3.4 Amorphous Refractory-Based Masks.- 9.3.5 Thermal Characteristics of a Mask Etch Process.- 9.3.6 Hard Mask Materials.- 9.4 SCALPEL.- 9.4.1 SCALPEL Basics.- 9.4.2 SCALPEL Mask Blank Processing.- 9.4.3 SCALPEL Mask Pattern Transfer.- 9.5 EUVL.- 9.5.1 EUVL Basics.- 9.5.2 EUVL Masks.- 9.5.3 EUV Mask Pattern Transfer.- 9.6 Ion Projection Lithography.- 9.6.1 Ion Projection Lithography Basics.- 9.6.2 IPL Masks.- 9.6.3 IPL Mask Pattern Transfer.- 9.7 IPL Mask Distortion Issues.- 9.8 Conclusion.- References.- 10 Bulk Si Micromachining for Integrated Microsystems and MEMS Processing.- 10.1 Introduction.- 10.2 Etch Technologies.- 10.2.1 Wet Chemical Etching.- 10.2.2 Plasma Etching.- 10.2.3 Reactive Ion Etching.- 10.2.4 High-Density Plasma Etching.- 10.2.5 Deep Reactive Ion Etching.- 10.3 ECR Results.- 10.3.1 ECR Experimental.- 10.3.2 ECR Process Parameters.- 10.3.3 ECR Process Applications.- 10.4 DRIE Results.- 10.4.1 DRIE versus ICP Etch Comparison.- 10.4.2 Etch Rates and Selectivity to Masking Materials.- 10.4.3 Aspect Ratio Dependent Etching (ARDE) in DRIE.- 10.4.4 Etch Selectivities.- 10.5 DRIE Applications.- 10.5.1 Chemical Sensing Devices.- 10.5.2 Advanced Packaging.- 10.5.3 SOI DRIE Etching.- 10.6 Conclusions.- References.- 11 Plasma Processing of III-V Materials.- 11.1 Introduction.- 11.2 Dry Etching Techniques.- 11.2.1 Ion Beam Etching.- 11.2.2 Reactive Ion Etching.- 11.2.3 High-Density Plasma Reactive Ion Etching.- 11.3 Masking Materials and Methods.- 11.4 Dry Etching Chemistries.- 11.5 Dry Etching of GaAs and Related Materials.- 11.6 Dry Etching of InP and Related Materials.- 11.7 Dry Etching of GaN and Related Materials.- 11.8 Selective Dry Etching of III-V Materials.- 11.8.1 GaAs on AlGaAs.- 11.8.2 InGaAs on InAlAs.- 11.8.3 GaN on AlGaN.- 11.9 Conclusion.- References.- 12 Ion Beam Etching of Compound Semiconductors.- 12.1 Introduction.- 12.2 Definitions.- 12.2.1 Ion Beam Etching.- 12.2.2 Reactive Ion Beam Etching.- 12.2.3 Chemically Assisted Ion Beam Etching.- 12.2.4 Sputter Yield.- 12.3 Ion Sources.- 12.4 Historic Development.- 12.5 Grid Design, Beam Uniformity, and Divergence.- 12.6 Brief Overview of Etching Kinetics and Chemistry.- 12.7 Surface Quality and Etch Masking.- 12.8 RIBE Etch Technology.- 12.8.1 RIBE of GaAs and AlGaAs.- 12.8.2 RIBE of InP.- 12.8.3 RIBE of InGaAsP and InP.- 12.8.4 RIBE of AlGaInP, GaInP and AlGaInAs.- 12.8.5 RIBE of (Al,Ga)Sb, (In,Ga)Sb and InAsSb.- 12.8.6 RIBE of GaP and GaN.- 12.8.7 RIBE of ZnSe and ZnS.- 12.9 CAIBE Etch Technology.- 12.9.1 CAIBE of GaAs.- 12.9.2 CAIBE of AlGaAs.- 12.9.3 CAIBE of InP and InGaAsP.- 12.9.4 CAIBE of AlGaInP and AlGaInAs.- 12.9.5 CAIBE of (Al,Ga)Sb and InSb.- 12.9.6 CAIBE of (Al,Ga)N.- 12.10 Endpoint Detection.- 12.11 Damage.- References.- 13 Dry Etching of InP Vias.- 13.1 Introduction.- 13.2 Past Difficulties in Obtaining High Rate Etching for InP.- 13.2.1 High Bias CH4-based Etching of InP.- 13.2.2 Elevated Temperature Cl-based Etching of InP.- 13.3 High Density Plasma Sources for High InP Etch Rate.- 13.3.1 Reduced Bias CH4-Based ECR Etching of InP.- 13.3.2 Addition of Cl to CH4-Based ECR Etching of InP.- 13.3.3 Low Temperature Cl-Based Etching.- 13.4 Measurement of Plasma Heating for InP Etching.- 13.4.1 Wafer Heating During High-Density Plasma Etching.- 13.4.2 Impact of Plasma Heating for InP Etching.- 13.4.3 Effects of Chamber Pressure and Wafer Temperature on Etch Rate.- 13.5 Application to Via Hole Etching.- 13.5.1 Etch Mask and Etch Characteristics.- 13.5.2 Etching Slot Vias Using a Photoresist Mask.- 13.5.3 OES for Endpoint.- 13.6 Summary.- References.- 14 Device Damage During Low Temperature High-Density Plasma Chemical Vapor Deposition.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and Discussion.- 14.4 Summary and Conclusions.- References.- 15 Dry Etching of Magnetic Materials.- 15.1 Introduction.- 15.2 Ion Milling.- 15.3 Cl2-Based ICP Etching of NiFe and Related Materials.- 15.4 Copper Dry Etching in Cl2/Ar.- 15.5 CO/NH3 Etching of Magnetic Materials.- 15.6 ECR and ICP Etching of NiMnSb.- 15.7 Dry Etching of LaCaMnOx

9783540667728


Plasma engineering.
Electronic circuits.
Integrated circuits--Design and construction.
Plasma etching.
Plasma spraying.

621.044 / SHU/H
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha